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1. Project Overview

This report describes the current work in progress for the SAGA project. The highlights
of the research in the last six months are:

• Design of ENCOMPASS, a prototype software development system, that is

based on using the SAGA tools.

• Design of a Prototype Configuration Control System for SAGA.

• Completion of a prototype UNIX Pascal Language Editor; the editor

includes semantic checking and incremental compiling.

• Enhancements of the SAGA Symbol Table Manager; the Manager stores

the table on permanent file storage.

• Implementation of a independent String Table Manager; the string tables

in the SAGA editor, and from the Symbol Table Manager will be replaced

by access to this separate module.

• Enhancements of the regular right part grammar version of Olorin, the

SAGA parser generator.

• Design and partial implementation or attribute-driven semantic analysis
scheme in Olorin and the SAGA Editor.

• Design of a Language-Oriented Editing Language.

• Manuals and Documentation for Epos, the SAGA editor, and its associated
tools.

• Partial design of a prototype SAGA executable specification language for

use in software development.
• Example formal specifications using Cliff Jones "rigorous approach" and

the SAGA prototype executable specification language.
• Enhancements to the ted, the proof editor; generalizations of tree editing.

• Parse tree storage in RCS. Design for integrating Diff/Undo utilities with

RCS parse tree version control storage.

Appendix I contains a list of fourteen theses and papers that document the project.

of these were produced in the last six months.

Five

2. Introduction

The SAGA system is a software environment that is designed to support most of the

software development activities that occur in a software lifecycle. The system can be

configured to support specific software development applications using given programming

languages, tools, and methodologies. Meta-tools are provided to ease configuration. The

SAGA system consists of a small number of software components that are adapted by the
meta-tools into specific tools for use in the software development application. The modules are

designed so that the recta-tools can construct an environment which is both integrated and

flexible. The SAGA project is documented in fourteen papers and theses, (see Appendix I.)

Copies of the papers completed so far this year are included in Appendix A, C, D, E, F.

Several major steps have been taken in the last six months towards the end goal of pro-

ducing practical software development systems. Several of the SAGA tools and results are

being targeted to spccific tasks _vithin the NASA software acquisition lifecycle process. A pro-

totype application of SAGA to a software development environment is being developed. The

resulting environment, called ENCOMPASS, includes aspects or every phase of the software

lifecycle. A complete SAGA-based Pascal editor which includes syntactic and semantic
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knowledge of the language has been built as a prototype. The editor uses many of the SAGA

tools including the symbol table manager. The editor interfaces to an incremental code gen-

erator to produce object code. The command language processor for the SAGA editor is being

redesigned. The new user command language developed for the editor will allow the user to

take advantage of the language-oriented aspects of the editor in editing commands and editing

programs.

The significant results from this year's research are detailed in the following sections.

3. ENCOMPASS: A Software Engineering Environment

ENCOMPASS is an example software engineering environment being constructed by the

SAGA project to support a particular model of the software lifecycle and software

configurations ENCOMPASS is based on the Vienna Development Method [Bjorner, 78],

which allows the developer to start with a completely abstract specification then refine it

through a number of steps into a program. The abstract specifications are based on predicate

logic and predefined mathematical data types. The VDM has been used successfully on large

software projects, and is suggested as a good choice for automation.

In ENCOMPASS, the software lifecycle is viewed as a sequence of developments, each of

which re-uses components from the previous ones. An executable specification language is

used so that programs are available for experimentation, evaluation, and validation as early as

possible in the development process. By producing a running system early and often in the

development process design and specification errors can be detected and corrected earlier and
at lower cost.

The objects in a software system are modeled as entities which have relationships

between them. An entity may have different versions and different views of the same project

are allowed. ENCOMPASS supports multiple programmers and projects using a hierarchical

library system containing a workspace for each programmer, a project library for each project,

and a global library common to all projects. By dividing the lifccycle into a sequence of small

steps, using a rigorous model for the components produced, and incorporating a hierarchical

library structure, ENCOMPASS should enhance the tracking, evaluation and management of

software project.s. More details of the design of ENCOMPASS can be found in Appendix A.

4. SAGA Support for Configuration Control

A prototype design for a system to support configuration control has been developed and

tested. The system supports reusable source and object code. The system is based on using a

hierarchical file system augmented with symbolic links (that is, directory entries that refer to

files stored under a new pathname from the root.} Commands are provided which allow com-

plex directory structures to be checked in and out of RCS as single units. The system is being

integrated with the hierarchical test harness and the ENCOMPASS environment. The motiva-

tion and design of the system is described in Appendix D.

5. The SAGA Editor

A number of enhancements were made to the SAGA editor: a new paging system, remo-

val of the restriction preventing the editing of parts of a program beyond a syntax error, and

the construction of a set of Pascal test programs to both check the Pascal grammar and pro-

vide regression testing of the editor. The editor has been tested and has been used to produce

a Pascal editor that checks both syntax and semantics. The Pascal editor interfaces directly to

the back-end of the Berkeley PC compiler.
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5.1. A New Paging System

The editor's paging system was rewritten in C to permit dynamic allocation of page tables

and data buffers, and to eliminate the maximum file length restriction previously required.

The new routines also relaxed the restriction that the byte length of the Pascal records to be

paged needed to be a power of 2; the records now may be any length.

The paging routines permit a programmer to manipulate a very large array of records

stored in a file by providing random access read and write functions on a record-by-record

basis, without requiring the entire file to be resident memory at once. The programmer

declares a Pascal record to be used in the array, and a buffer to contain as few or as many

records in memory as required. He is able to reference each record by its absolute record

index in the file. The added cost of this scheme is that each record reference now requires a

procedure call. This system can be very helpful if processing is required of only a few records

out of the entire file, since most of the file need not ever be read into memory, saving process-

ing time, and permitting the program to run with much less memory. The system adds consid-

erable overhead, however, if frequent access to many records is required, and in this case may

run more slowly than if the entire file were memory resident and directly accessed.

The portability of the paging system was tested when the system was transferred to an

AT_T 3b2 work station. The work station runs System V Unix _, which is notably different

from the BSD 4.2 Unix_under which the paging system was developed. The porting of the

software took approximately two weeks. The resulting system was then moved back to BSD

4.2 for compatibility checking, and the necessary modifications required to accomplish this

task proved to be small. This indicates that the software is easily retargetable between

broadly different Unix_systems, and the portability of the editor as a whole is thus enhanced.

5.2. Editing Past Syntax Errors

Until now, the editor restricted the user to making modifications to his program only up

to, but not past, the first syntax error in the program. It was necessary to repair this error

before editing could be performed beyond this point. This restriction has now been removed.

Editing can occur at any position in the program regardless of the number or location of exist-

ing syntax errors. If a modification is made just beyond an error, this error may prevent the

parser from completely parsing the new input, but the modification will still be accepted by

the editor and applied to the program. Repairing this preceeding error will permit the parser
to continue with the parse.

5.3. Implementation of a Scanner Generator

In an effort to make the Mystro-based editor more generic, a scanner generator is being

implemented which will produce a table-driven lexical analyzer for any editor target language.
_Vhen a new target language is presented for adaptation, the adaptor will specify the lexical

classes in a standard formal notation. This specification will be input for the scanner genera-

tor, which will produce tables for the deterministic finite automaton that will perform the

scanning for the editor. These tables will allow the editor to be totally independent of the

target language, with all language-oriented information to be loaded into the editor upon invo-

cation. Only one copy of the executable editor code need be kept online with this system, thus

greatly reducing the use of disk space. The hope is also that the resulting editor code will be

less complex as it will be less dependent on the vagaries of a particular target language. This

will increase the maintainability of the editor immensely.
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5.4. A Test Suite for Pascal

A set of test programs has been prepared for use in checking the Pascal grammar and

exercising the editor. Together, these programs cover all of the production rules in the Pascal

grammar. These programs permit testing of the editor with all possible production rules that
will be encountered in a given grammar. This testing is likely to uncover many of the parser

problems that may be encountered using the editor with this particular language resulting in a
more stable tool.

5.5. The User Interface

The editor's user interface is being revised, with consideration being given to implement-

ing a keystroke mapping table to permit the user to assign editor commands to whatever ter-

minal keys he wishes, thus permitting customization of the command set. The user also will be

permitted to customize the command set by enabling or disabling some of the basic com-
mands, and by writing user-defined commands based on sequences of other commands.

5.5.1. A New Editor Command Language

Currently under development is a target-independent structured editing language, tenta-

tively called Grendel. The purpose of Grendel is to enhance the power and extensibility of

the SAGA editor. The language will be the new command language for the line-mode of the

editor, and must thus create a natural interface between the user and the editor. Full access

to the capabilities of the editor will be provided, while still being reasonably easy to use. Some
of the initial criteria for the language include:

• flexibility and extensibility;

• allowance of both structure-oriented operations and standard text-oriented operations;

• a fairly small set of primitives and combining operations, which still provide all the func-

tionality required of either a structure or a text editor;

• user-friendliness with a uniform syntax for commands and well-defined semantics.

An initial draft of the grammar for Grendel is near completion, with the initial installa-

tion goal set for Fall 1985.

5.5.2. A Modular User Interface

The new editor language is just the first part of a fully modular user-interface package
which will be implemented during the Fall of 1985. The three principle components of the sys-

tem will be: the command interpreter, which will be a translator for the Grendel editor

language; the display interface, which will support the windowing functions and therefore the

screen mode of the editor; and the keyboard interface, which will provide direct,

reconfigurable mappings of keystrokes to Grendel command sequences. In this way a uniform
interface between the user and the editor will be created which will allow the user to tailor the

editor to both himself and to the target language of the particular editor being used. All

reeonfigurable elements will be table-driven and will thus be loadable upon editor invocation.

This would seem to provide the most useful and flexible interface to the editor.

5.6. Editor Filters

The filter command of the editor has been used to implement many functions including

semantic checking, separate compilation, incremental compilation and pretty printing. The

I
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filter command allows other programs to be executed as a coroutine from within the editor

under user control. Such programs may operate on the SAGA parse tree and other files. The

interface between the editor and such programs is described in Appendix G which contains a
manual for "\Vriting Filter Processes for the SAGA Editor."

5.7. A Tree Analysis Utility: Rulecount

A program for the analysis of the parse trees produced by the SAGA editor has been

implemented and tested. The program, called rulecount_ traverses a list of parse trees and

collects statistics on the number of nodes in the tree, the production rules covered, and the

depth of the tree, among other values. This program will be incorporated into the editor test

harness currently under development. Rulecount provides a useful tool for analyzing editor

parse trees and thus evaluating the performance of the editor. For example, one may have a

test suite for a given language for which an editor has been produced. After using the editor

to create parse trees for each of the test programs, rulecount may be run and the coverage of

the rules of the grammar for the language may be checked. In this way one could verify that

the test suite does indeed use all possible language constructs. The frequency distribution of

the rules can also be analyzed to ascertain possible means of improving the grammar. A test

suite for the language Pascal has already been created and verified in this manner using
rulecount.

6. Dlff/Undo Version Facility

The difference system for the editor, which allows for control of multiple versions of

SAGA parse tree files, has been separated into an independent program. Not only does this

modification insulate the difference system from changes in the editor, but now the difference
commands are executable via the editor's filter command. The filter command allows the user

to execute commands which access the SAGA parse tree and which are executable from the

editor command mode. This also means that the differences can also be displayed or accessed
directly, without using the editor. Thus, the reusability of this tool in other SAGA tools is

enhanced. Because the difference system can no longer access the editor's internal data struc-

tures, some minor restrictions have had to be imposed on the capabilities of the system. New

mechanisms are being designed into the interface between the editor and the differencing sys-

tem to compensate for this loss of capabilities. These mechanisms are currently being imple-
mented.

The difference system has had a screen interface added. The differences are displayed on

the screen one at a time. If a difference is too large to fit on one screen, the first part is

displayed and the user can scroll the differences up or down. The old and new parts of the

difference can be scrolled separately or together. When done viewing one difference, the user
can go on to the next, or back to the previous one. The screen interface has also allowed the

difference system to highlight the tokens that are different, so that the user can more exactly

view what has changed. The screen interface makes the difference system more pleasant to
use.

The version of RCS, the Revision Control System, which works with SAGA parse trees is

also being modified so that RCS and the difference system can be used together. The problem

that needed to be addressed was the dependence of both systems on the fields in the parse tree

nodes which indicate which nodes have been modified. As the user modifies the parse tree
through the editor, the modified fields in the parse tree nodes are set to indicate which nodes

have been inserted and which have had neighbors deleted. Both the difference system and
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RCS use these fields to find the differences between versions and then clear them to prepare
for differences with the next version. Thus if a new difference base was set before the version

was checked into RCS, RCS would lose some of the information that it needed. This is being

solved by having the difference system "check in" a temporary version whenever the base ver-

sion changes. When the user checks in the final version, the differences between the temporary

versions are combined to give RCS the delta to store.

7. Symbol Table Manager

The Symbol Table Manager developed by [Richards, 84] has been modified to separate

the function of the string table from the manager itself. The string table manager and symbol

table manager now form two separate modules which can be used as tools by themselves. The

string manager implements substantially the same interface as provided in the old symbol
table, but is a stand-alone facility in order to minimize the size of the editor.

The symbol table manager has been upgraded to better support the distributed symbol

tables required for type checking in separately compiled modules. Further modification to the

symbol table and string table managers allows the tables to be stored permanently in files and

allows access to the tables though the paging manager. The naming scheme for symbol tables

has been extended to allow for file storage.

The symbol table has been used in other tools, in particular it was used to develop the
Pascal editor.

8. A SAGA Pascal Editor with Semantic Checking and Code Generation

A SAGA Pascal Editor has been constructed from the SAGA Editor Epos, the Symbol

Table Manager, SAGA utilites, and the Berkeley PC compiler. The Pascal editor generates
intermediate code for the Berkeley PC code generator directly from the parse tree produced

by the SAGA Pascal editor. When the Pascal source is modified, the utility modifies the

corresponding intermediate code to reflect the changes. The intermediate code can then be

compiled using the code generation passes of the PC code generator to produce VAX native
code.

8.1. Semantic Checking

Semantic checking for the correctness of a Pascal program can now be accomplished

within the SAGA editor. The semantic phase collects the attributes of the objects declared in

a Pascal SAGA source file, and performs semantic checking to ensure the legality of the

source. The semantic phase can operate either within the editor, where it provides immediate

feedback to the user about semantic errors, or as a stand-alone filter, similar to a traditional

compiler. The SAGA Symbol Table Manager is used to store, organize, and access the attri-

butes collected. This ad-hoc semantic phase may in the future be replaced by a more formal,

attribute-grammar based evaluator.

Utilities within the editor display semantic errors and semantic information under user

control. Semantic errors are highlighted. Attributes of variables, parameters, fields of records,

and elements of arrays can be displayed by selecting them using the standard editor cursor.

Similarly, an error diagnosis can be obtained for a semantic error by selecting the error with

the cursor. Appendix F contains more details of these utilities and displays.

!
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8.2. Incremental Recompilatlon

The incremental recompilation facility utilizes the modifications-trace collected by the
SAGA Make facility to control the code generator. In the first compilation of a Pascal source

file, the code generator compiles the entire source, producing an intermediate code file and an

object file. A new intermediate code file is produced, from which a new object file is gen-

erated. In recompilations, the incremental recompiler is guided by the Make information:

walking the parse tree again, utilizing existing intermediate code where possible, and calling
the code-generator to produce new code where needed. A new intermediate code file is pro-

duced, from which a new object file is generated. Further improvements to the incremental
recompilation are feasible and could include reusing the relocatable binaries.

8.3. Code Generation

The code generator's input is 1) the parse tree file, 2) the symbol table, and 3) a
specification of which parts of the tree to compile. Its output is binary Portable C Compiler

intermediate code, such as is generated by the Berkeley Unix Pascal Compiler; this code is fed

into the back-end of the Berkeley compiler to complete code-generation.

A Master's thesis was deposited this summer and details the system (called peg.) The
thesis is included in Appendix F.

9. The Olorln Compiler/Edltor Generator

Olorin is a compiler- and editor-generator system whose goal is to produce the syntactic

and semantic analysis components of a compiler or editor from regular right part LR gram-

mars and attribute grammar specifications of programming language semantics. Several

Olorin-based Epos editors have been built and work is progressing towards the automatic pro-

duction of Epos editors which incorporate semantic checking.

The O]orin parser generator has been divided into two separate tools, the compiler-

generator, and the editor-generator. The compiler-generator is essentially the same as the tool
discussed in previous reports. The O[orin editor-generator has been restructured _and substan-

tial portions rewritten to remove the previous bias toward compiler-generation. Semantic

actions have been replaced with a prototype attribute grammar scheme. The attribute gram-
mar scheme is in the process of being extended to include maintained and constructor attri-

butes which are discussed in Appendix C. The resulting code is in the debugging stage.

The editor-generator translates the attribute grammar into a set of parse tables and an

attribute evaluation filter. The attribute evaluator is based on [Reps, 83] with extensions to
support attributes over regular right part grammars and the maintained and constructor attri-

butes. The attribute evaluator is in the final stages of coding.

The SAGA group has become the first research group to develop a general method of

integrating attribute grammars with information in the surrounding software environment.

These ideas have been published in Sigplan 85 [Beshers and Campbell, 85] (see Appendix C).

10. Software Specification

Research is continuing on a prototype specification language to specify and design

software based upon the Vienna Development Method (VDM) [Jones, 80]. Using this method

for program development, examples have been completed in detail, starting with specifications
of abstract data types and ending with code in Pascal. An "Example of a Constructive

Specification of a Queue" is given in Appendix B. Since the checking of the correctness of the

!
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specifications involves repetitive rule checking. This suggests that automating this process

would be reasonable. This is the case for the abstract data type examples considered. The

specifications were translated from the predicate calculus used in VDM into Prolog and then

proved.

Areas for further research include constructing examples of abstract programs and con-
sideration of more complicated abstract data types than the ones already studied. Cliff Jones

uses a specification language based upon predicate calculus. The main goal is to consolidate

the approach of Jones to obtain a specification language which is based upon the precise use of

natural language built upon a foundation of well-defined concepts.

11. SAGA Utility Functions

Over the last six months substantial effort has been expended generalizing, organizing,
and documenting the standard interfaces used by SAGA tools. A standardized library of Pas-

cal (pc compiler) to Unix _ system interfaces has been developed. Various other tools have

been developed to support software development. Appendix H contains manual pages docu-
menting these tools and interfaces.

12. Proof Management

To aid in the development of formal proofs, such as those arising in formal program

verification, a proof management system is a desirable tool. A proof management system can

make large, complex proofs easier to write, modify, and undcrstand. More importantly, a

proof management system also provides a means to check the validity of a proof automatically.
A prototype proof management system was constructed during the year ending December

1984. Appendix E contains a paper written this spring dcscribing the system.

\Vork this spring has continued on the proof managemcnt system. Some latent bugs were

found and removed, additional commands were added to give the editor even greater flcxibility
for building and maintaining tree structures, the interfaces to the theorcm provers were redone

to increase modularity and reliability and to better utilize new thcorem prover features. Also,

we have recently connected the editor to a parsing system 1. The addition of the parsing sys-

tem allows the user to enter expressions using a more natural syntax, making the editor much

easicr to use, and the trees constructed much easier to read.

These changes have helped to make the system more usable; however, it has become clear

that if the system is to be used in "real" situations, it must be brought out of the prototype

stage. We have been slowly shifting our emphasis from the topic of proof management to the

larger, more general topic of structure editing. We have come to realize that the flexibility
gained by using an "unstructured" structure editor can be useful in other areas beside theorem

proving and program verification. If we can develop an editor general enough (and we believe

that we can), then a single extensible, customizable editor can be used to edit structures

representing anything that has a tree or hierarchical structure. We have constructed proto-

type editors for abstract syntax trees, and for editing information trees. (An information tree
is a tree where each node describes a category, and the children of that node describe subto-

pics in greater detail.) Additionally, preliminary work has been done on building an editor for
doing program transformations.

a The parsing system was independently developed by David J. Carr and Samuel Kamin.
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These prototypes have confirmed our suspicions that there are many important, powerful

uses for unrestricted tree editing. Consequently, research is now underway that will result in

the design of such a general purpose structure editor. We hope to design an editor that will

work on tree structures in much the same spirit as our current tree editor, but will be extensi-

ble so that it can be easily customized for specific uses, without altering the editor itself. The

design must also address itself to the problem of representing the tree to the user. In applica-

tions beside theorem proving, where the user is likely to move around in the tree rapidly, it is

very difficult for a user to retain a sense of where she is in the tree. We anticipate that this

design 2 will be done late this year.

13. Summary

We believe the SAGA project has made significant progress in this last half-year. The

construction of the prototype Pascal language-oriented SAGA editor which includes semantic

checking and separate intermediate code generation demonstrates the flexibility and versatility
of the SAGA approach. The SAGA editor will soon be frozen and used as a foundation for

generating software devclopment systems. The new editing language and command interface
will allow language-oriented program transformations to be encoded and invoked from the

standard SAGA user interface. A Ph.D. thesis will document the final editor system and
should be complete by January 1985.

The ENCOMPASS paper details how the SAGA system might be used to support the

lifccycle of a project. A preliminary design for an executable specification language has been

completed and will be documented at the end of the year. The specification language will

allow a more realistic and complete experimentation with the concept of automated manage-

ment of the whole cycle and will enable us to investigate methods to support reusable
so ftw are.

Experiments in configuration control have confirmed the theoretical advantages and prac-

ticality of our proposed approach. This work will continue and prototype tools are being

developed. The configuration control system will form a major component of the proposed
ENCOMPASS environment.

Substantial progress has been on implementing a compiler and editor generator system

using maintained and constructor attribute grammars. A Ph.D. thesis will document this sys-
tem and should be complete by January 1985.
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Abstract

ENCOMPASS is an example integrated software engineering environment being con-
structed by the SAGA project. ENCOMPASS supports the specification, design, construction

and maintenance of efficient, validated, and verified programs in a modular programming
language. In this paper, we present the life-cycle paradigm, schema of software configurations,

and hierarchical library structure used by ENCOMPASS. In ENCOMPASS, the software life-

cycle is viewed as a sequence of developments, each of which reuses components from the previ-

ous ones. Each development proceeds through the phases planning, requirements definition,

validation, design, implementation, and system integration. The components in a software sys-

tem are modeled as entities which have relationships between them. An entity may have

different versions and different views of the same project are allowed. The simple entities sup-

ported by ENCOMPASS may be combined into modules which may be collected into projects.

ENCOMPASS supports multiple programmers and projects using a hierarchical library system

containing a workspace for each programmer; a project library for each project, and a global li-

brary common to all projects. A prototype implementation of ENCOMPASS is being construct-
ed on the UNIX 1 operating system using an existing revision control system and many tools

developed by the SAGA project.

1. Introduction

It is widely acknowledged that software is both difficult and expensive to produce and maintain.

One solution to this problem is the use of software engineering environments which integrate a number

of tools, methods, and data structures to provide support for program development and/or mainte-

nance/15,34,42,43 l. The SAGA project is investigating both the formal and practical aspects of provid-

ing automated support for the full range of software engineering activities[2,5,7,21]. A SAGA-based

software tool or environmdnt is created by combining standard components which are generated by

This research is supported by NASA grant NAG 1-138.

IUNIX is a trademark of Bell Laboratories



recta-tools.ENCOMPASS is an example software engineering environment being developed by the

SAGA group. In this paper we describe the life-cycle paradigm, schema of software configurations, and

hierarchical library structure used by ENCOMPASS.

It has been suggested that modular programming[35] and the top-down development of pro-

grams[48] can help reduce the diffÉculty of program development and maintenance. By logically dividing

a monolithic program into a number of modules we reduce the knowledge required to change fragments

of the system and decrease the apparent complexity. By using stepwise refinement to create a concrete

implementation from an abstract specification we divide the decisions necessary for an implementation

into smaller, more comprehensible groups. A number of modern programming languages support modu-

lar programming[9,26,28] and environments to support modular programming have been designed[41 and

constructed[41,50]. Methods to support the top-down development of programs have been devised[19,36 l

and put into use[37 I.

A life-cycle model describes the sequence of distinct stages through which a software product

passes during its life-time[l 1]. There is no single, universally accepted model of the software life-

cycle[3,51]. The stages of the life-cycle generate software components such as specifications of various

forms, code written in programming languages, and many types of documentation. Configuration

management is concerned with the identification, control, auditing, and accounting of components pro-

duced and used in software development and maintenance[l]. Configuration control systems[10,23,38]

and models of software configurations[24,331 have been suggested as aids to configuration management.

Life-cycle and configuration models that are understood and accepted by everyone involved can enhance

communication, aid project management and increase product quality.

ENCOMPASS is a software engineering environment concerned with the construction and mainte-

nance of efficient, validated, and verified programs in a modular programming language. The software

life-cycle is viewed as a sequence of developments, each of which reuses components from the previous

ones. Each development passes through the stages planning, requirements definition, validation, design,

implementation, and system integration. An executable specification language is used to produce pro-
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grams for experimentation, evaluation, and validation as early as possible in the development process.

The components in a software project are modeled as entities which have relationships between them,

and different views of the same project are allowed. The simple entities supported by ENCOMPASS

may be combined into modules which may be collected into projects. ENCOMPASS supports multiple

programmers and projects using a hierarchical library system containing a workspace for each program-

mer; a project library for each project, and a global library common to all projects.

In section two, we describe the life-cycle paradigm on which ENCOMPASS is based and in section

three, we present its schema of software configurations. In section four, we describe the hierarchical

library structure used by ENCOMPASS and in section five, we discuss a prototype implementation of

ENCOMPASS which is being constructed on the UNIX operating system. In section six, we describe our

plans for extending ENCOMPASS and in section seven, we summarize and draw some conclusions from

our experience.

2. The Software Life-Cycle

ENCOMPASS is used by a programming team to construct and/or maintain a system, which may

contain programs written in different languages. Modular programming techniques may be supported

directly by the languages/9,26,28/ or by coding conventions and/or a pre-processor[46]. A System must

usually satisfy both performance constraints, such as speed or storage requirements, and design con-

straints, such as proper modularization and documentation. Verification guarantees that software com-

ponents are correct and complete relative to each other, while validation shows that a system performs

the functions desired by the customers/Ill.

It has been suggested that the reuse of software can significantly reduce the cost of program

development/17/, and systems which contain libraries of previously coded modules and/or a number of

standard designs for program have been proposed/25,29/. In ENCOMPASS, any software component or

group of components can be saved for later reuse in a central library. The library supports a number of

concurrent projects, both accepting and supplying components for reuse in all phases of the life-cycle.

ENCOMPASS supports the reuse of all the components produced in the development of a system. In

8



addition to source and object code, documentation, formal specifications, proofs of correctness, test data

and test results can all be stored in the central library for reuse.

Figure 1 shows the proposed software life-cycle which consists of a sequence of developments.

These developments might produce a series of prototypes which are used in the production of a system.

In this case, each prototype would be evaluated and the results incorporated in the next stage of produc-

tion. During the next stage, all the materials from the development of the prototype would be available

for reuse. A sequence of developments might also produce a family of systems for use in different

operating environments or with different optional features. In this case, all the materials from the

development of the family would be available for reuse in the development of new family members. A

sequence of developments might also represent what is traditionally called the maintenance phase of a

development. A system, which has been constructed and installed, may have to be modified, corrected,

or enhanced. In ENCOMPASS, this is seen as a new development, but with all the products of the pre-

vious development available for reuse. In this way ENCOMPASS supports both development and

maintenance with the same methods and tools.

ENCOMPASS supports program development by successive refinement using the Vienna Develop-

ment Method[19,37]. In this method, programs are first written in a language combining elements from

conventional programming languages and mathematics. These abstract programs are then incrementally

refined into programs in an implementation language. The refinements are performed one at a time and

each is verified before another is applied. Therefore,, the final program produced by the development

and the original abstract program are equivalent. In ENCOMPASS, abstract programs may be written

in the executable specification langu,_.ge PLEASE[44], which is an extension to the language Path Pas-

cal[6] allowing routines and data types to be specified using predicate logic. A procedure or function

may be specified using pre and post-conditions and an invariant for a data type may be specified.

It has been proposed that software development may be viewed as a sequence of transformations

between specifications written at different linguistic levels[27] and systems to support similar develop-

ment methodologies have been constructed[32]. ENCOMPASS supports this view of software develop-

4
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ment by allowing abstract, predicate logic based definitions of data types or routines to be transformed

into successively more concrete realizations. The use of executable specifications allows two or more

linguistic levels to be run in parallel and compared for the purposes of verification or debugging.



The development steps in ENCOMPASS may be much smaller than in the traditional software

life-cycle. For example, a system might go through a very large number of prototypes before delivery to

the customers. Developments may also be composed hierarchically. For example, if a system is very

large and complex, the production of an executable specification for the system may in itself be a com-

plete development. If the system is composed of several major components, the production of each com-

ponent might also be a complete development. By dividing the life-cycle into small steps using the

mechanisms of sequential and hierarchical composition, ENCOMPASS allows each step to be smaller and

more comprehensible and thereby increases management's ability to trace and control the project.

2.1. Software Development

Each development passes through the phases: planning, in which the problem isdefined and itis

determined ifa computer solutionisfeasibleand costeffective;requirements definition,which produces a

high-levelspecificationof the system to be produced; validation,which determines that the system

described by the specificationwillsatisfythe customers; design,in which the basicstructure of the sys-

tem is described; implementation, in which components of the system are constructed; and system

integration,in which the components are integrated into a complete system, acceptance testsare per-

formed, and the product isdelivered.This structure isFairley'sphased life-cyclemodeI[111,extended to

support the Vienna Development Method and the use of an executablespecificationlanguage.

The Vienna Development Method can aid in the production of correctsoftware by allowing a sys-

tem to be produced by a sequence of refinements,each of which isshown correct before proceeding

further in the development. The use of an executable specification language allows each refinement to

be verified by testing techniques as well as by mathematical proof. Abstract programs can also enhance

the design phase by allowing experiments to be performed which influence design decisions, and the vali-

dation phase by allowing the customers to evaluate a running system early in the development process.

We believe the the early validation will aid in lowering the cost of correcting errors made during require-

ments definition. Each phase of the development produces certain components which may be used

and/or updated during the rest of the life-cycle[Ill.
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2.1.1. Planning

In the planning phase the problem to be solved is defined and it is determined if a computer solu-

tion is feasible and cost effective[Ill. Alternative solutions to the problem are considered and compared

for cost effectiveness and preliminary plans and schedules for the project are created. In ENCOMPASS,

these processes can be enhanced by the use of abstract programs as prototypes for experimentation and

evaluation. This phase produces the two natural language documents[ll]: the system definition, and the

preliminary project plan. The system definition describes the original problem, gives justifications for

the proposed computer system as a solution, and contains acceptance criteria which describe the stand-

ards and procedures to be used for evaluating the system. The project plan describes the milestones and

specific products to be produced as well as the organizational structure to be used by the project. Once

the problem has been defined and it is clear that a computer solution will be cost effective, a more

detailed description of the system requirements is needed.

2.1.2. Requirements Definition

Requirements definition determines the functions and qualities of the software to be produced by

the development[ll]. This phase concentrates on the needs and desires of the customers as they affect

the external system interface, rather than the internal structure of the software to be produced. This

phase produces[Ill the software requirement specification, and preliminary versions of the users manual,

and the software verification plan. The software requirement specification precisely describes each

requirement of of the software to be produced. It contains a functional specification of the system,

descriptions of the external interfaces, and performance and design constraints. The users manual is

documentation for the customers. It contains an overview of the system, tutorials on various system

functions, and detailed users documentation on all system commands. The software verification plan

describes the methods to be used in verifying that the system produced by the development satisfies the

software requirement specification. Although the requirement specification describes a software system,

it is not known if any system which satisfies the specification will satisfy the customers. In ENCOM-

PASS, we extend Fairley's phased life-cycle model to include a separate phase for customer validation.



2.1.3. Validation

The validation phase attempts to show that a system which satisfies the software requirements

specification will also satisfy the customers, that is, that the requirements specification is valid. If not,

then the requirements specification should be corrected before the development proceeds to the costly

phases of design, implementation, and system integration. In the validation phase, the developers

interact with the customers and the system validation summary is produced. This document describes

the customers evaluation of the software requirements specification. It lists any problems encountered

and the solutions agreed upon.

Traditionally, producing a correct specification is a difficult task. The users of the system may not

really know what they want and they may be unable to communicate their desires to the development

team. If the specification is in a formal notation it may be an ineffective medium for communication

with the customers, but natural language specifications are notoriously ambiguous and incomplete. Pro-

totypingI14,22], and the use of executable specification languages[20,31,52] have been suggested as partial

solutions to this problems. Providing the customers with prototypes for experimentation and evaluation

may increase customer/developer communication and enhance the validation process.

In ENCOMPASS, we extend Fairley's model to include software requirements specifications which

are a combination of natural language and abstract programs written in PLEASE. PLEASE programs

are prototypes which can be used for experimentation and evaluation, and a formal specification of a

part of the system to be produced which can be used throughout the rest of the life-cycle. By providing

executable programs early in the development process, errors in the requirements specification may be

discovered and corrected before the internal structure of the system has been defined.

2.1.4. Design

In the design phase, the structure of the software system is defined[Ill. The components of tile

system; their interfaces; the flow of control and data between components; and global data abstractions,

structures and formats are all designed and documented. This phase produces the software design

specification[Ill, which provides both a record of the design decisions made and a blueprint for the
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implementation phase. This document is created in two steps: first the architectural design

specification, and then the detailed design specification. In ENCOMPASS, the software design

specification may contain PLEASE programs which describe the modular structure, and possibly the

function, of parts of the system. These programs may be used as prototypes in experiments performed

to guide the design process. They may also be used to verify parts of the design using techniques from

the Vienna Development Method[19]. During the implementation phase, these PLEASE programs can

be refined into programs in the implementation language Path Pascal.

2.1.5. Implementation

In the implementation phase, programming language code for the system is produced[Ill. Each

separately constructed module must be written, compiled, debugged, and documented. Each module

must also be shown to satisfy the requirements and design specifications. In ENCOMPASS, this may be

accomplished using mathematical reasoning[16,49], testing[13,18,301, technical review[47], or inspection.

The use of executable specifications enhances the verification of system components using either testing

or proof techniques. The executable specification for a component can be used as a test oracle against

which the implementation can be compared. Since the specification is formal, proof techniques may be

used which range from a very detailed, completely formal proof using mechanical theorem proving to a

formal argument presented as in a mathematics text. PLEASE provides a framework for the

rigorous[19] development of programs. Although detailed formal proofs are not required at every step,

the framework is present so that they can be constructed if necessary. Parts of a project may use

detailed formal verification while other, less critical parts may be handled using less expensive tech-

niques. Once the separate components have been constructed and verified, they must be integrated and

verified as a system.

2.1.tl. System Integration

In the system integration phase, separately implemented modules are integrated into larger and

larger units, each of which is shown to satisfy the specifications[Ill. If errors are found and corrected in



a low level module, the correctness of any previously verified modules which use the low level module

may have to be redetermined. This phase produces the software verification summary[Ill which

describes the results of all reviews, inspections, tests, and formal verifications which have been per-

formed. ENCOMPASS provides tools to aid in the hierarchical integration and testing of programs.

When using these tools, all modules which are used by a particular module are tested before tests of that

module are begun. When the final integration has been performed the acceptance tests are performed,

the product is delivered and the development is complete.

After the development has been completed a development legacy[Ill is written. The legacy sum-

marizes the development and provides a permanent record of what problems and solutions were encoun-

tered. This document provides both an aid to management in evaluating the effectiveness of the tools

and methods used on the project, and an index to the development to be used by other developers wish-

ing to reuse the components produced. The evaluation and reuse of components is further enhanced by

the use of a configuration model to describe software components and their relationships.

3. A Model for Software Configurations

The ENCOMPASS model of software configurations is a refinement of the model presented in[21].

It is similar to the entity-relationship model[8] and uses the concepts of aggregation and generaliza-

tion[39,40]. The model provides us with a natural way to describe software and also has a convenient

representation on conventional computer systems which can be used as the basis for software engineer-

ing environments.

3.1. Entitles and Relationships

An entity is a distinct, uniquely named component. An example of an entity is a file, which could

contain the source code for a program, some test data, or an executable program. An entity may have

attributes which describe its properties or qualities. For example, a file could have attributes such as

"size", "owner", "permissions", and "modify time". An entity may be decomposed into smaller com-

ponents, which may or may not be entities themselves. For example, a file might be composed of pars-
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graphs of text or statements in a programming language.

Two or more entities may have a relationship between them. For example, the entities containing

the source and object code for a routine might have the relationship "compiled-from" between them. A

relationship may also have attributes, for example the time the compile took place. A group of entities

with a relationship between them may be abstracted into an aggregate entity. This entity would have

entities as the values of some or all of its attributes. For example the specification 2, body, object code

and load module for a group of routines might be abstracted into a single entity called a "code module".

An aggregation hierarchy describes the way components are combined to form more and more complex

structures.

A generalization is an abstraction which allows a number of distinct components to be grouped

together into a single named component. A generalization hierarchy shows the way components with

similar attributes are grouped into more and more general components. In our model, the set of entities

which share certain attributes may be viewed as a generic entity. For example, the specification and

body for a module might share the attributes "module name" and "type" (for example, source code,

object code, test data or text). These two entities might then be grouped together into a generic com-

ponent representing the source code for the module.

An entity has an internal state which may change with time. A version represents the state of an

entity at a particular point in time. A version of an aggregate entity denotes the versions of all the enti-

ties of which it is composed. The same version of an entity may be used in many different composite

entities or versions of the same aggregate entity.

3.2. Components Supported by ENCOMPASS

The aggregation hierarchy for ENCOMPASS contains three levels: simple entitle8 may be com-

bined into aggregates called modules, which may be collected into aggregates called projects. An entity

2 In PLEASE a separately compiled module may have a specification, which describes the interface and func-
tion of the module, and a body, which contains the implementation of the module. The two are compiled as a unit
to produce a single piece of object code which may be linked with other separately compiled modules to form an ex-
ecutable load module.

11



which does not have entities as the values of any of its attributes is known as a simple entity. An exam-

ple of a simple entity is a file containing the source code for a routine with the attributes "language",

"modify time", and "size". A module is an aggregate entity composed of other entities which are closely

related or have some common property. For example, a code module could contain the specification,

body, object code, and load module for a program. The module would have attributes specification,

body, object and load with the appropriate entities as values. A project is an aggregate entity composed

of modules. For example all the modules used in developing a program might be be grouped together

into a project.

The generalization hierarchy for ENCOMPASS includes several sub-classes for both modules and

simple entities. A module may be: a code module, which contains entities associated with the production

and debugging of code; a test module, which contains materials for the testing of other modules such as

sets of test data and test drivers or harnesses; a proof module, which contains entities used in the proof

of a refinement; a document module, which contains entities used in the production of documentation; or

a history module, which contains components used to track the history of a project. Simple entities may

be: code components, including source code, object code, load modules and include files; makefiles[12],

which contain instructions for compilation, linking, and testing; test data, such as the input or correct

output from a program; proof data, which might be input for a mechanical theorem prover; and docu-

ment data, such as input to text processing programs.

3.3. Views

A view is a mapping from names to components. A project under development has a distinguished

base view which describes the entities of the system being designed and the primitive relationships

between these entities. Other views of the project are produced from this base view by selecting, and

possibly renaming, certain entities with particular attributes. For example, the development and quality

assurance teams may have different views of the software system being developed by the project. The

development team may use a view of the system which includes all the specifications and software being

developed. However, the quality assurance team may have a different view which contains the

12
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specifications, executable code and, in addition, the test cases. Views may be used to abstract the phases

of the project corresponding to planning, requirements definition, validation, design, implementation,

and system integration. Views may be used to identify a slice of the software being developed, for exam-

ple, in order to restrict the activities of a programmer to a particular group of modules. Views may also

be constructed to represent the effect of a modification on the rest of a system. In ENCOMPASS, access

to components is controlled through the use of views and a hierarchical library structure.

4. Library Structure

Figure '2. shows the library structure used by ENCOMPASS which contains a workspac, for each

programmer, a project library for each project, and a global library common to all projects. Each pro-

grammer controls his own workspace while each project leader controls the library for his project and

the librarian controls the global library. All components which are accessed by more than one program-

mer reside in the project or global libraries where they are controlled by either the project leader or the

librarian.

A programmer accesses the components he is working with through his workspace. The workspace

may actually contain these components, or it may reference components in the project or global libraries

through a view. A workspace may reference the working copy of an components or a version fixed at

some earlier point in time. The project library contains components that must be available to all the

personnel on a particular project, and can aid the project leader in controlling and monitoring the

development. The project leader controls the components in the project library by controlling access

and the views into the library.

For example, a component containing the specification and body for a module might reside in the

project library. Assume two programmers are working on the module. Programmer A is assigned the

task of writing a specification for the module. Therefore he may access the working copy of the

specification from his workspaee, but he has no access to the body for the module. Programmer B is

assigned the task of writing the body from the completed specification. Therefore his workspace con-

tains references to a fixed version of the specification and the working copy of the body.

13
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Figure '2. ENCOMPASS Library Structure

The global library contains components available for reuse on all projects and is read-only to all

but the librarian. The librarian controls which components will be saved for reuse and how they will be

available. When a project leader feels that a component may be useful for reuse on other projects he
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submits it to the librarian who performs a component review to determine if the component meets the

minimum standards for correctness, reliability, documentation, and generality. If the component meets

these standards then the librarian must decide how to index the component for later retrieval. Each

component available for reuse is associated with a number of key words which describe its structure,

function and quality 3. Components in the library may be accessed either individually or in groups. To

search the library for components that may be useful, a programmer uses simple retrieval tools, specify-

ing the key words in which he is interested using a regular expression. The tool returns a list of com-

ponents, each of which is associated with the key words he specified. The programmer may then create

a reference to or copy of any components which are of interest in his workspace and examine them in

more detail.

For example, suppose a programmer needs a verified module which implements a stack of strings.

By searching the library on the key words "stack" and "verified" he might discover that a verified

module implementing a stack of integers existed in the global library. Assuming he had the proper

access permissions, he could then make a copy of this module in his workspace and modify it to imple-

ment a stack of strings. Tile programmer may be able to reuse more than just the source code for the

module. The proof data and any associated documentation could also be retrieved, modified, and reused

in the new development.

5. Implementation

A prototype implementation of ENCOMPASS is being constructed on a Vax running BSD 4.2

UNIX. ENCOMPASS is designed to be an extension of the UNIX environment, so standard software

tools can be used. ENCOMPASS currently encorporates standard editors, text processors, compilers,

linkers and many other tools. Language-oriented tools for PLEASE are being constructed with the

SAGA meta-tools. For example, a language-oriented editor for PLEASE is created from a BNF descrip-

tion of the language. Other language-oriented tools being constructed include an interactive tool to

3 For example a module might have met technical review standards, be well tested, be proven by a period of

use, or possibly even be formally verified with rcspect to its specification.
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transform PLEASE programs into executable form and a verification condition generator.

The configuration control tools and the hierarchical library structure are implemented using a

representation of our configuration model on the UNIX file system[21]. The representation uses files to

represent simple entities, directories to represent modules and projects, and symbolic links 4 to represent

complex relationships. For example, a directory representing a module may contain files representing

simple entities such as the specification of the module, the body of the module, the object code, and pos-

sibly the load module. A number of tools have been written which use the underlying directory struc-

tures. For example, complex entities can be moved and copied as single units. A version of any entity

can be saved using the RCS revision control system[45]. For complex entities a table containing the ver-

sions of all the sub-components is stored.

The use of symbolic links simplifies the interaction of the configuration tools and existing systems

components. By implementing references between modules by symbolic links, tools such as a compiler

can directly access the required source needed for the compilation and existing compilers can be used in

our environment without alteration. Another benefit of the use of symbolic links is that the makefile for

a module only needs to search the current directory for source dependencies. Therefore, the makefile

can use pattern matching techniques to access all the relevant files in a module and does not have to be

rewritten every time the modularization of the program is changed.

The workspaces and libraries are implemented as directories, which are owned by the person who

controls them. These directories contain sub-directories, files and symbolic links with the meanings

given above. Views are implemented as directories containing symbolic links. References from

workspaces, through views, to components in the project and global libraries are implemented as chains

of symbolic links. Views are created and modified by csh 5 scripts which are saved and run by project

leaders. If a view references a particular version of an entity, rather than the working copy, the version

is checked out of RCS into a special area of the library when the view is created. This structure has

4 A symbolic link contains the name of the file to which it is linked. Symbolic links may span file systems and

may refer to directories. The file to which the link refers need not exist at the time the link is created.

5 Csh is a command interpreter on UNL_ which supports many of the features found in modern programming

languages. A seqllence of shell commands may be saved and run a.s a program.
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!

! been used to support PLEASE, Path Pascal, C, Pascal and csh programs.

!

!

8. Future Work

Although ENCOMPASS is independent of the language used for development, currently all the

language-oriented tools are being constructed for PLEASE and Path Pascal. We plan to apply our exe-

I

!

I

I

!

!

cutable specification method to ADA and create the language-oriented tools to support it. We plan to

extend the notion of versions used in ENCOMPASS to differentiate between sequential revisions and

parallel alternatives. A revision supercedes the component from which it was created, while an alterna-

tive provides a choice between component. For example, different alternatives of a program can be

maintained for use with different operating systems. Each alternative passes through a series of revi-

sions as it evolves.

Presently the configuration control tools in ENCOI_WASS can only be used on projects which fol-

low certain conventions for directory structure. We would like to extend the implementation of

ENCOMPASS to allow its use with any pre-existing directory structure on UNIX. We would also like to

extend ENCOMPASS to support aggregation hierarchies of arbitrary complexity and a generalized

!

!

hierarchical library structure. We plan to use ENCOMPASS to maintain itself, and to develop several

new software tools. We hope that this experience will "give us new insights which will be incorporated in

future versions of ENCOMPASS.

!
!

!

7. Summary and Conclusions

ENCOMPASS is an example software engineering environment being constructed by the SAGA

project to support a particular model of the software life-cycle and software configurations. In ENCOM-

PASS, the software life-cycle is viewed as a sequence of developments, each of which reuses components

from the previous ones. An executable specification language is used so that programs are available for

!

!

experimentation, evaluation, and validation as early as possible in the development process. ENCOM-

PASS supports the Vienna.Development Method, in which a system is constructed by first producing a

specification in an executable specification language and then incrementally refining it into a program in

! 17
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an implementation language. Each refinement produces an executable program which may be used as a

prototype system. By producing a running system early and often in the development process, design

and specification errors can be detected and corrected earlier and at lower cost.

The components in a software system are modeled as entities which have relationships between

them. An entity may have different versions and different views of the same project are allowed.

ENCOMPASS supports multiple programmers and projects using a hierarchical library system contain-

ing a workspace for each programmer; a project library for each project, and a global library common to

all projects. By dividing the life-cycle into a sequence of small steps, using a rigorous model for the com-

ponents produced and used, and incorporating a hierarchical library structure, ENCOMPASS should

enhance the tracking, evaluation and management of software projects.
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An Example of a Constructive Specification of a Queue : Preliminary Report

Leonora Benzinger

Computer Science Dept., University of Illinois, Urbana, Illinois 61801

1. Introductlon

The following is an example of the constructive specification of a queue which is done in the style of

[Jones 80] using the Vienna Development Method. The basic approach is that of data type refinement.

While the techniques we used are not restricted to those used by Jones, particularly with respect to the

method for proving properties of the retrieve function for linked lists, the notation is consistent with his.

2. The specification of a Queue

2.1. States and types for the Queue operatlons

Queue _ Element-list

INIT

states : Queue

ENQUEUE

states : Queue

type : Element -->

DEQUEUE

states : Queue

type :--> Element

EMPTY

states : Queue

type : --> Boolean

2.2. Pre- and post-eondltlons for the Queue operatlons

post-INIT(q,q') --- q' ---- < >.

post-ENQVEUE(q,e,q') --- q' -_ q ',', <e>.

pre-DEQUEUE(q) - q _ < >.

post-DEQUEUE(q,e,q') --- q' = tl(q) and e = hd(q).

post-EMPTY(q,q',b) -----q = q' and (b <:> q _--- <_ >).

g ~.



8. A Data Refinement of a Queue in Terms of Linked Lists

8.1. A queue as a linked llst

Queuel = [node];
node _ record

E : Element;

PTR : Queuel

end;

8.2. The retrleve function

The retrieve function is a function which maps the linked list representation of a queue into a list

representation.

retr : Queuel --> Queue

retr(ql) -------if ql = NIL then < >
else (< ql.E > _1retr(ql.PTR)).

The data type invariant for Queue and Queuel is TRUE.

8.8. Queuel models Queue

In order to show that Queuel models Queue the retrieve function must map all of Queuel into

Queue and every member of Queue must be the value of some member of Queuel under the retrieve map-

ping. These two conditions are stated more precisely as rules aa and ab in [Jones 80, p.187]. In addition

to rules aa and ab, the pre- and post-conditions for the operations for Queuel must imply the pre- and

post-conditions for the corresponding operations for Queue for members of Queuel mapped back to Queue

by the retrieve function. These conditions are precisely stated as rules da and ra [Jones 80_ p.187].

8.8.1. Rules aa and ab are satisfied by the retrieve function

an. (V ql E Queue1)(3 q E Queue such that q _-_ retr(ql)).

Proof. We use structural induction on Queue1. Suppose ql _ NIL. Then retr(ql) _ < > and < > E

Queue.

Suppose ql E Queuel and ql _ NIL. Then retr(ql) _- <ql.E> I', retr(ql.PTR). By the induction

hypothesis there exists q' E Queue such that q' -_ retr(ql.PTR). Let q _ <ql.E> '_, q'. Clearly, q E

Queue and q -_ retr(ql).

ab. (V q E Queue)(3 ql C Queue1 such that q = retr(ql)).

Proof. We use structural induction on Queue. Suppose that q _- < >. If ql _ NIL then by the definition

of the retrieve function retr(ql) _ q.

Let q E Queue and suppose that q _ NIL. It follows that q = hd(q)',', tl(q) where tl(q) E Queue. By

the induction hypothesis, there exists ql' E Queue1 such that retr(ql') _ tl(q). Define ql E Queue1 as fob
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ql.E _ hd(q) and ql.PTR : ql'.

Then retr(ql): q.

8.3.2. Specificatlon of the operatlons on Queue1

To specify the operations on Queue1 in terms of pre- and post- conditions we need an extension of

some of the notions introduced by Jones [Jones 80, chapter 9] for lists to linked lists. The queue opera-
tions of initialization, enqueue, and empty are straightforward to implement in terms of linked lists. A

difficulty occurs in the post-condltion for the enqueue operation for a queue implemented on linked lists.

If we choose to introduce a new argument, say, tail to describe the element appended at the end of a

queue, then tail must be expressed in terms of the new queue. This is because of the form of the post-

condition for the enqueue operation at the previous level of abstraction (in terms of lists) is in terms of the
new queue which is obtained from the old one by concatenation of a list of a single element to the end of

the old queue.

This can be done by the following:

tall: <hd(rev(ql))> for ql E Queue1

and properly extended notions of hd, rev (the reverse order on lists), and _ _ to linked lists. If the post-
condition for the enqueue operation is stated in terms of tail, it is very awkward to verify rule ra for this

operation because the post-condition for the enqueue operation on lists is stated in terms of queues of lists,

not "tail ends" of queues. This approach then seems to require a backtracking in the post-condltion for

the enqueue operation in terms of lists using the notion of tail.

We use another approach, which is to extend the notions used for lists in the post-condition for the

enqueue operation of a queue implemented in terms of lists to corresponding notions for linked lists. This

has the advantage of making the post-condltion for the enqueue operation in terms of linked lists very

similar in form to the post-condition for enqueue for queues of lists. This also makes makes rule ra rea-
sonably straightforward to check.

8.3.3. Extenslon of the theory of llststo llnked llsts

We definethe notions of head, tail,and concatenation for linkedlists.By an abuse of notation, we

use the same names for thesenotionswhich aredefinedfor lists[Jones80, chapter 9].

Let llist,llistl,llist2be linkedlists.Denote by hd the head of a linkedlist.Itisdefinedas follows:

hd(llist)- llist.E.

The tail of a linked list is denoted by tl. The definition is:

tl(llist) ----llist.PTR.

The length of a linked list is denoted by len. The definition is:

len(llist) ----if llist ---- NIL then 0

else 1 + len(tl(llist)).

The index operator extended to linked lists is given by:

llist(i) --- if i -_ 1 then hd(llist)

!



else tl(llist)(i- 1).

The concatenation operator extended to linked lists is given by:

llistl '**,llist2 - the unique linked list such that:

(V i E {1,...,len(llistl)} (llist(i) = llistl(i))) and

(V i E {1,...,len(llist2)} (llist(i + len(llistl)) = llist2(i)).

We observe that llist ','tNIL = NIL *,*,llist = llist.

8.3.4. The retrieve function has an inverse

To define _hd(llist)_ where llist is a linked list, we need the inverse of the retrieve function. We
observe that the retrieve function, retr, has a natural extension from Queue1 to List1, the collection of all

linked lists, by defining retrieve as follows :

retr : Listl --_ List

retr(ll) _- if 11 _ NIL then < >
i_ retr(ll.PTR).else (<I1.E> II

The next lemma proves that retr is 1 to 1 and therefore, the inverse exists.

Lemma. Let 11, 12 in Listl and assume that retr(ll) _- retr(12). Then 11 _ 12.

Proof. The proof is by structural induction. Suppose ll _ NIL and 12 _ NIL. Then retr(ll) -_- < > but

retr(12) : <12.E> Illt retr(12.PWR). This contradicts the assumption that retr(ll) ---_ retr(12).

Next, let ll _ NIL and retr(ll) _-_ retr(12) for some 12 in Listl. Furthermore, suppose that for each

linked sublist 11' of ll, if retr(ll') _ retr(12'), where 12' is a linked sublist of 12, then 11' _ 12'. We note

that 12 _ NIL since 12 _ NIL implies that retr(12) _ < >, in which case retr(12) _ retr(ll). Therefore

retr(12) = <12.E> I1_D retr(12.PTR). We also have retr(ll) = <ll.E> Iii retr(ll.PWR). Since ret(ll) =

ret(12), <ll.E> = <12.E> and retr(ll.PTR) : retr(12.PTR). By the induction hypothesis, I1.PTR -_
12.PTR. We conclude that ll _-_ 12.

We observe that the rules aa and ab hold when applied to linked lists. The proofs carry over by

replacing queues implemented in terms of lists and linked lists by arbitrary lists and linked lists. Thus,

the function retr is a 1 to 1 mapping onto the set of lists, List.

Let 1 in List. There exists a unique 11 in Listl, by rule ab, such that retr(ll) _ 1. Define invretr as:

invretr(1) _ 11.

This definition can be restricted in a natural way to hold only for queues implemented in terms of lists and
linked lists.

We are now in a position to extend the list notation to linked lists. Let ll in Listl. Then there exists

(a unique) 1 in List such that retr(ll) _ 1. Assume furthermore that ll _ NIL and that ll.E _ e. We
define the linked list formed from the element ll.E as follows:

< ll.E > = invretr(< hd(1) > ).

In particular, <hd(ll)_> _ invretr(<hd(l)_>). Notice that the list in the term on the left is a linked list,

while the list in the term on the right hand side of the equivalence is not a linked list.
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8.8.5. States and types for the Queuel operations

queuel ---_ [node];
node ---- record

E : Element;

PTR : Queue1

end;

INITI

states:Queue1

ENQUEUEI

states:Queue1

type :Element -->

DEQUEUE1

states • Queuel
type "--> Element

EMPTY1

states : Queuel

type : --> Boolean

8.3.6. Pre- and post-condltlons for the Queuel operations

post-INITl(ql,ql') - ql' _- NIL.

post-ENQUEUEl{ql,ql',e) ------ql' ---- ql I_ de>.

pre-DEQUEUEI{ql) - ql _ NIL.

post-DEQUEUEl(ql,ql',res) -- ql' _ ql.PTR and res _--- ql.E.

post-EMPTYl(ql,ql',b) - ql' _ ql and {b <_> ql ---_ NIL).

8.8.7. The retrleve functlon isan isomorphlsm

Lemma. Let de>, ll E List1 and suppose that len(ll) ---- n for some integer n > 0. Then (ll °01
<e>).PTR = 11' _I de> where I1 E Listl and len(ll) = n - 1.

Proof. Suppose n _- 1. Then ll = Gel> for some el E Element. We have {11 _m<e>).PTR ---- (Gel> II
<e>).PTR ---- de> _ NIL _1de>. NIL E Listl and len(NIL) _-_ 0.

Let len{ll) -----n. Then ll -_ Gel, e2, ..., en> where ei E Element for i _ 1, 2, ..., n and the ei's are

not necessarily distinct. We have

_' <e>).PTRH <e>).PTR _- (<el, e2, ..., en> ,i(11 H

<el, e2, .., en, e>.PTR

---_ (e2, .., en, e>
,0 de>._e2, ..., en=> l0

Let 11' ---_ <e2, ..., en>. We observe that ll' E Listl and len(ll') -----n - 1.

I



Lemma. Let <e>, 11 • Listl. Then retr(ll _ <e>} ---- retr(ll)_ <e>.

Proof. We use induction on len(ll). Suppose that len(ll) ---- 0. Then ll ---- NIL. It follows that retr(ll II

<e>} ---- retr( <> 111<e>) : retr(<e>) ---- <> 111<e> = retr(ll)Ill I <e>.

Assume that the lemma holds Vll' • Listl for which len(ll') d n for some integer n > 0. Let 11 •

Listl and suppose that len(ll) -----n and let ll.E ---- e'. We have

We note that ll.E ---_ (11 _t de>).E so that

We can rewrite (11 _ de;>).PWR as 11' _J_de> where len(ll') d n from the previous lemma. By the

induction hypothesis,

retr((ll _a de>).PWn) -----retr(ll' _ de;,} = retr(ll')_ de>.

It follows that

retr(ll f_ de>) = de'> IllI (retr(ll')ll_ _ de>).

But from the definition of the retrieve function

retr(ll) = dhd(ll);-_ retr(ll.PWR).

Therefore, retr(ll _ <e;-) --_ retr(ll)_ de;-.

" retr(12), that is, the retrieve function is an isomor-Theorem. V ll, 12 • Listl, retr(ll ",,12) ---- retr(ll)ii
phism from the set of linked lists to the set of lists.

Proof. We use induction on len(12). When len(12) = 0 we have

retr(ll ,,H12) = retr(ll ,," d >) ---- retr(ll).

In List we have

H < > ---- retr(ll).retr(ll) ",, retr(12) ---- retr(ll),,

" 12') _--- retr(ll)" retr(12') for 12' • List1 for which len(12') d n for some positiveAssume that retr(ll H i_

integer n. Suppose that len(12) -_-- n. Then

" (dhd(12)> H retr(tl(12)))" retr(l:) = retr(ll),, ,,retr(ll) _,

' (hd(12):>)" retr(tl(12)).= (retr(]l),, ,,

By the induction hypothesis and the previous lemma,

" ha(12))" retr(tl(12)).(retr(ll) ,," dhd(12)>)",, retr(tl(12) -=--retr(ll. ,,

Since len(12) ----=n, len(tl(12)) _-- n - 1 so that we can use the induction hypothesis with 12' -_ tl(12). It
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follows that

" <hd(12)>)." < hd(12)>)" retr(tl(12)) -_ retr((ll ,,retr(ll. ,, " tl(]2))

" (<hd(12)> " tl(12)))-----retr(ll ,, ,,

-- ,I 12).-- retr(ll .

8.8.8. The operations on Queue1 model the operations on Queue

The next step is to show that each of the new operations on Queue1 : INIT1, ENQUEUE1,

DEQUEUE1, and EMPTY1 correspond to the operations INIT, ENQUEUE, DEQUEUE, and EMPTY on

Queue. For each of the operations on Queue1 we must show that both da and ra [Jones 80] hold, where da
and ra are :

da. (V ql E Queuel)(pre-OP(retr(ql),args) => pre-oPl(ql,args)).

ra. (V ql E Queuel)(pre-OP l(ql,args) and post-OPl(ql,args,ql',res) ----> post-

OP(retr(ql),args,retr (ql'),res)).

da. (V ql E Queuel)(pre-INIT(retr(ql),args) => pre-INITl(ql,args)).

Proof. The proof is immediate since pre-INIT and pre-INIT1 are both TRUE.

ra. (V ql E Queuel)(pre-INIT1 (ql,args) and post-INIT1 (ql,args,ql',res) ----> post-
INIT(retr(ql),args,retr(ql'),res)).

Proof. Since ql' _ NIL we know that retr(ql') ---- < >.

da. (V ql E Queuel)(pre-ENQUEUE(retr(ql),args) ----> pre-ENQUEUEl(ql,args)).

Proof. This follows immediately since the pre-conditions for ENQUEUE and ENQUEUE1 are both
TRUE.

ra. (V ql E Queuel)(pre-ENquEUEl(ql,args) and post-ENQUEUEl(ql,args,ql',res) => post-

ENQUEUE(retr(ql),args,retr (ql'),res)).

Proof. We have ql' ---- ql I', <e> and retr(ql') ---- retr(ql I', <e>). By the lemma of 2.3.7, retr(ql') =
retr(ql) i, <e>.

da. (V ql E queuel)(pre-DEqUEUEl(retr(ql),args) => Pre-DEQUEUE(ql,args)).

Proof. Since retr(ql) _ < >, ql _ NIL.

ra. (V ql E Queuel)(pre-DEQUEUEl(ql,args) and post-DEQUEUEl(ql,args,ql',res) => post-

DEQUEUE(retr (ql),args,retr(ql '),res).

Proof. We have ql _ NIL and ql' _ ql.PTR and res ---- ql.E. From the definition of the retrieve func-

tion, retr(ql) ---- <ql.E> I_lretr(ql.PWR). Then retr(ql') ---- retr(ql.PWR)---_ tl(retr(ql)). Finally, res =

ql.E = hd(retr(ql)).

da. (V ql E Queuel)(pre-EMPTY(retr(ql),args) _-> pre-EMPTYl(ql,args)).

I



Proof. This is immediate since the pre-conditions are both TRUE.

ra. (V ql e Queuel)(pre-EMPTYl (ql,args) and post-EMPTY1(ql,args,ql',res) _---:> post-

EMPTY(retr(ql),args,retr (ql '),res)).

Proof. We have ql : ql' and (b <:> ql : NIL). Since ql = ql', retr(ql) _ retr(ql'). But ql = NIL

implies that retr(ql) ---_ _>. Therefore, b _-_:> ql _--- NIL _> retr(ql) _ <>. Next, suppose that

retr(ql) : <>. Since retr is 1 to 1, ql = NIL ---> b. Therefore, b <=:> (retr(ql) ---- <=>).

4. The Realization of the Queue Object in Pascal

To realize the queue object in Pascal we need a refinement which maps the queue-like structure into

a representation of the queue in terms of pointers and variables on the Pascal "heap".

Queuerep :: Heap: Ptr --> Noderep
where Noderep :: ELT : Element

PTER : ^ [Ptr].

A further refinement is necessary to go from the queue representation to an implementation of a

queue in Pascal.

program queue;

type

qptr : ^qrec;

qrec : record

qdata : char;

qnext : qptr

end; (* qrec *)

vat

head : qptr;

tail : qptr;

function empty : boolean;

begin

empty :: (head ---: nil)

end; (* empty *)

procedure init;

begin

head :: nil;
tail :: nil

end; (* init *)

procedure enqueue(arrive : qptr);

begin
if arrive < > nil then

arrive^.qnext := nil;

if empty then
head :_---arrive

else tail^.nextq :: arrive;
tail :: arrive

end; (* enqueue *)

function dequeue(var head, tail : qtr) : char;

begin
if head < > nil then
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begin

dequeue :_ head^.data;

head :---- head^.nextq;
if head _-_ nil then

tail :_ nil

end

end; (* dequeue *)

References.

Jones, Cliff B._ Software Development : A Rigorous Approach_ Prentlce-Hall International, Inc, London,
1980.



APPENDIX C AND APPENDIX D REMOVED

REPRINTS



m

Z
o

o

t(-

* 31
_ I"!1

* Z

t-

*
-x-

t(-

_e

t*

t*



!
!

a
I

i

t

I
I
!

ii

!
I

!

I
i

i
i
!

N87 -28303

SAGA Project Mid-Year Report 1985 Appendix E

TREE-ORIENTED INTERACTIVE PROCESSING WITH AN

APPLICATION TO THEOREM-PROVING

David Hammerslag

Samuel N.Kamin

Roy H.Campbell

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois

June, 1985



l

I
I

I

I
I
i

I

I
!
I
I

I
I

I
I
I
I
I

Tree-Oriented Interactive Processing with an Application to Theorem-Proving

David Hammerslag
Samuel N. Kamin

Roy H. Campbell

ABSTRACT

This paper describes our concept of "unstructured structure editing" and ted, an editor for unstructured

trees. Ted is used to manipulate hierarchies of information in an unrestricted manner. The tool has

been implemented and applied to the problem of organizing formal proofs. As a proof management tool,

it maintains the validity of a proof and its constituent lemmas independently from the methods used to

validate the proof. It includes an adaptable interface which may be used to to invoke theorem provers

and other aids to proof eonstructioh. Using ted, a user may construct, maintain, and verify formal
proofs using a variety of theorem provers, proof checkers, and formatters.
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Theorem Proving, proof management, structure editing, tree editing
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1. INTRODUCTION

The manipulation and maintenance of detailed information in an organized manner is a

problem in software engineering projects. This paper describes a management tool that aids the

construction, modification, and maintenance of hierarchies of information. The tool has been

implemented and applied to the problem of maintaining formal proofs.

The tool is based on a tree editor which organizes and manipulates hierarchies of text,

program, or data. As a proof management tool, it maintains the validity of a proof and its

constituent lemmas independently from the methods used to validate the proof. It includes an

adaptable interface which may be used to to invoke automated proof methods. Using the tool, a

user may construct, maintain, and verify formal proofs using a variety of theorem provers, proof

checkers, and formatters.

1.1. Structure Editing

Our approach can perhaps best be described by the phrase "unstructured structure

editing." Our editor allows constrained hierarchies of information to be edited but does not

impose any restrictions on the editing process itself. We can explain our approach by analogy

with syntax-oriented program editors [Cam84], [TeiS1], [Fis84], and [Don80] 1. We see program

editors as being of two types:

o These are the traditional editors, which are marked by flexibility but little power for

editing structured data such as programs. For example, the operation place begin and

end around this statement is not readily accomplished, because the editor has no notion of

what a statement is. It is important to note that there is a lot of structure in the text, but

that structure is not used until compilation time.

0 The newer "syntax-directed" editors have knowledge of the structure being edited, and

strive to maintain that structure at all times. These editors facilitate structure-oriented

operations, but are generally characterized by inflexibility. For example, it is difficult to

transform a while loop to a repeat loop, because this involves changing the type of

statement and also interchanging the two components (Boolean expression and statement)

of the statement; in whichever order these are done, the tree is temporarily in an

inconsistent state.

We want particularly to emphasize that structure editors have taken two steps away from

traditional editors, only one of which we feel is helpful:

(1) Trees are edited (or possibly a mixture of trees and text) rather than just text. Since

programs have a natural tree structure, this is useful.

(2) The structure which the program must possess when editing is done, it must in effect

possess throughout the editing process. In traditional text editors, it is the user's

I We have in fact produced a prototype program editor based on our ideas, which is described in section 5.3.
However, most of our work has been done on proof editing. Our point in giving this example is to explain our struc-
ture editing philosophy in a more familiar setting.

I



responsibility to construct a program which is syntactically correct; the editor does not

"look over his shoulder" as he is editing. Yet syntax-directed editors do not trust the user

to construct a valid tree, and impose constraints on what the user can do to ensure that

the tree is in a valid state at all times.

We believe, and our tree-editor to some extent demonstrates, that it is possible to move

from text-editing to tree-editing without making the editing process any more constrained than

it is in text editors.

Our editing approach exploits the manipulation of abstractions without imposing the

constraints of a template editor. The editor manipulates the abstract structure without

verifying that the detailed syntax and semantics are correct. Further tools are used to verify

these details. A program editor based on our tree editor permits the creation of proper syntactic

structures, but never requires syntactic correctness. Each node in the abstract syntax tree can

be individually validated at the user's request. To change a while loop to a repeat loop, the

order of the children would be reversed (a simple tree-editing operation), the parent node would

be changed from while to repeat and the "node validator" would be invoked to verify its

syntactic and semantic correctness.

2. APPLICATIONS TO THEOREM PROVING

We have constructed an editor, ted, for unstructured tree editing. The editor is more fully

desribed in section 3. In brief, ted maintains an internal tree structure which is edited by the

user via commands such as t (copy a node at another place in the tree), t* (copy a sub-tree at

another place in the tree), e (edit the contents of a node), and m* (move a sub-tree to another

place).

The editor was originally designed for use with proof trees. The editor is used to create

proof trees, and external programs, such as automatic theorem provers, are used to certify that

the tree created is, in fact, a proof tree.

2.1. An Example

As an example, consider one of the first (and easiest) theorems proved in our system,

cancellation on the left in a group; that is that for all a, b, and c, ab = ac --b = c. Initially we

tried to prove this directly from the axioms for a group. Figure 1 depicts the tree we initially

tried 2. Unfortuately, the theorem provers being employed were not able to verify this fact in a

reasonable amount of time, so the problem was decomposed into two lemmas, the children of the

root in Figure 2. Each of these lemmas was verified by the theorem prover, and finally, the

theorem was proved by using the two lemmas. Note that in the final tree, the proof of the

theorem does not use the axioms concerning group theory, rather the supporting lemmas are

assumed to be true, and the validity of the inference is checked.

These figures are not meant to show how trees are displayed in our system, but rather to represent to tree
structure being discussed
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quality Axioms S

Figure 2.

2.2. Related Work

Before the editor was built, other systems (those with well-documented interfaces) were

investigated [Wey77,Wey74], [Ble83,Ble73], [Gor79], [Ger79, ISI79], and IRep84]. The systems

examined can be divided into two groups: those that explicitly maintain a proof tree, and those

that do not. For constructing formal proofs, a system which does not retain a proof tree leaves

the user disadvantaged in a number of ways. If the user becomes lost in a proof, there is no way

to retrace the steps taken. There is no way to reconstruct the proof when proving a similar or

related theorem. Among systems in which an editable history is not kept are LCF IGor79] and

the UT interactive prover [Ble83,Ble73]. The UT prover makes use of user interaction to make a

theorem prover faster and more efficient. However it prover provides no real flexibility: all the

user can do is attempt to guide the prover down the proper path. In Edinburgh LCF, a user

can write procedures which map formulas or theorems to theorems. The user defines "tactics"

which are applied, under the user's control, to the proposition to be proved. While LCF

provides the power of programability, it is very easy to "become lost" in a proof. The user must
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often resort to naming many intermediate results just so that they can be referred to later.

Three systems which actually allow the user access to the tree being created were

investigated: Affirm [Ger79,ISI79], FOL [Wey77,Wey74], and Reps' interactive proof checker

[Rep84]. Although these systems allow the user to, in some sense, consult the tree, they still lack

the flexibility afforded by general purpose tree editing. Affirm, a specification and verification

system, includes a method for doing interactive proof development; proof tree management is

emphasized in the Affirm literature. Although the user of Affirm is free to view the tree, the tree

can only be manipulated by asking the system to make a specific (legal) transformation. This

prevents the user from re-using parts of the tree or parts of other proof trees, or modifiying a

proof by making small changes in each node. In FOL, the user inputs a rule of inference with

associated parameters, where some of the parameters are usually line numbers referring to

previously checked proof steps. While FOL provides a very versatile methodology for

referencing previous lines, the user is still restricted to proving theorems in a bottom up manner:

any proposition being used on a deduction step needs to have been previously proven. A proof

checking editor has been implemented by Reps and Alpern using the Cornell Synthesizer

Generator. When using the editor, the user edits program source code with imbedded assertions

for the partial correctness proof in a Hoare-style logic. As the user edits the program and

assertions, the editor checks the correctness of the program and proof; program fragments

without valid proofs are highlighted. The interactive proof checker is very close to our approach

in spirit: a user is free to move about in the tree, and proofs of supporting lemmas can be tried

in any order. However, in the interactive proof checker, the proof tree is really a derivation tree

for the proof in a proof language; the user has no direct access to the tree, and it can only be

indirectly modified by a reparse.

3. EDITOR OVERVIEW

The prototype unstructured tree editor is written in Franz Lisp [Fod83]. The intent was

to explore the uses of this form of tree editor for proof management (and possibly other uses).

To make the editor easier to use, a familiar command set was desirable. Consequently, much of

the editor addressing scheme, as well as the commands provided and the basic command

structure, is based on that of the editor ex [Joy80]. The editor, called ted, is presented in the

following manner. First a brief description of the trees being edited is given, then the method of

addressing used in the editor is described. Following that the editor commands are presented.

The editor is used to create, modify and maintain proof trees in the system. Throughout

the development of the editor, it was kept as general purpose as possible; that is, whenever

possible, no assumptions were made concerning the interpretation to be placed on the trees

being edited. As might be expected, this turned out to be difficult, and unresolved problems

remain.



3.1. Tree Structure

The editor edits arbitrary trees. Each node in a tree contains an element of text and a

status element. Because the editor is ignorant of the content of a node, the user is free to

manipulate the node text at any time. The status of a tree node is used to indicate the

consistency of the structure begin edited and access to it is restricted.

3.2. Tree Addressing

Structural addressing, similar to that used in Mentor [DonS0], is used to reference

individual nodes and subtrees within the tree being edited. Each node's address is dependent

only upon its position in the tree at any given time. The address of a node is derived by

starting at the root (denoted by "]') and, for each link traversed in getting to the desired node,

appending the number of the child that that node represents to the address. In addition to

using the full address of a node, a node may be specified by a base address and a combination of

address offsets. There are three base addresses: the root, the current address, and address

variables. The root is just "]". The previous address, the current address, and stored addresses

are referenced as in ex.

In addition to base addresses, address offsets can be used to specify an address relative to

some other address. The offsets are: a digit, ,,A,, ,>,, and "<'. A digit n, where 1--_n--9,

addresses the nth child of a node. "^" refers to the parent of a node. ">" and "<" denote the

right and left siblings of a node, respectively. For example, "1>1 ^'' represents the second child

of the current node (that is the parent of the first child of th right sibling of the first child},

which may also be written simply as "2."

3.3. Editor Commands

The syntax of commands is: [tree address][command][tree address], with all parts optional.

Each command has a default address (as in ex, usually ".', but "]" for w). The default

command is an abbreviated print. Unless otherwise noted, the commands are the tree analogue

to the corresponding ex command. There are, however, two exceptions: 1) the *'ed versions of

commands refer to entire sub-trees, while the un-*'ed versions refer to single nodes; 2) in

commands that have a target address (t,m), the node or sub-tree is inserted into the tree in such

a way that the target address becomes the address of the new node or sub-tree. The editor

commands are (default addresses in parentheses):

(t)a add a new node. t is the rightmost son of the current node.

(.)c <external prog>
invoke an external program.

(.)d, (.)d*

{.)e Call the node editor.

f [<filename> l

h [<cmd>]
help.
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(.)k <letter>

(.)m<address>, (.)m*<address>

(.)p print the data at this node.

(.)p*ln]
print the "first line" of every node in the subtree down to level n (previous n if n is
omitted).

q

(.)r [<filename>]

(.)s <status>
set the status of a node.

(.)t<address>, (.)t*<address>

(/)w [<filename>l

(.)=

4. A Detailed Example

In this section we present transcript of an editor session. The session shows the creation

and validation of the proof tree discussed in section 2.

The following is an example of editor use for theorem proving. The example used is

exactly that given in section 2.1. When the edit session starts the tree is that of figure 1. Then

the axioms are deleted and the two (previously proven) lemmas are added to the tree as children

of the root, giving the tree of figure 2. Finally, the proof is completed.

In the node formulas, "A" is universal quantification. It is followed by a list of quantified

variables and then the formula in which they are quantified. Commands typed by the user

appear in boldface, the text in italics is comment added to help explain effects of the command,

all other text is output by the editor

% ted tree1

ted version 0.2

First the entire tree is displayed. Note that the status is "unproven."

I"p*
: unproven

(A (a b e) (IMP (= (* a b) (* a c)) (= b ¢)))

/1 : AXIOM

(a (x y z) (= (* x (* y z)) (* (* x y) z)))

/2 : AXIOM

(A (x) (= x x))

/3 : SIMP

(A (x) (= (* x id) x))

We now show the content of each of the axiom (and simplification) nodes

7



I-Dp
]1 : AXIOM

(A(xy z)(= (*x(*y z)) (* (* x yj z)))

I'>P

/2 : AXIOM

(A (x)(= x x))
(A (x y) (IMP (= x y) (= y x)))

(A (x y z)(IMP (AND (= x y) (= y z)) (= x z)))

(A (x y) (IMP (= x y) (= (inv x) (inv y))))

(A (w x y z)(IMP (AND (---- w x) (= y z)) (= (* w y) (* x z))))

_>P

/3 : SIMP

(A (x) (---- (* x id) x))

(A(x)(= (* ia x) x))
(A (x)(= (* (inv x) x)id))
(A (x)(= (* x (inv x))id))

We now return to the root of the tree, delete the children just shown, and add
the two lemmas as children.

A

: unproven

(A (a b e)(hMP (= (*
&&&

3d
2d

I" 1 r lemmal

a b) (* a c)) (---- b c)))

we have now read in the first lemma, and take a look to see what's there.

I'P*

/1: (e pvl)

(A (a b e)

(IMP (= (* a b) (* a c)) (---- (* (inv a) (* a b)) (* (ins, a) (* a c)))))

/11 : AXIOM

(A(xy z) (= (* x (* y z))(* (*x y) z)))

/12 : SIMP

(A (x)(= (* x id) x))

/13 : AXIOM

(A (x)(= x x))

_- >r lemma2

Now the same for the second lemma.

I" P*

/2: (e pvl)
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(A (a b e) (IMP (---- (* (inv a) (* a b)) (* (inv a) (* a c))) (---- b c)))

/21 : AXIOM

(A (xy z) (= (*x (*y z))(* (*x y) z)))

/22 : SIMP

(A (x) (= (* x id) x))

/23 : AXIOM

(A(x)(= x x))

Finally, we return to the root and validate the proof by invoking one of the provers,
pvl.

: unproven

(A (a b c) (IMP (= (* a b) (* a c))(= b e)))
&&

_- e pvl

Skolemizing:

Pri: 6 7 10 7 [3]

Stored (Non_input + input = total):
1 proof, tree size: 6
PROOF:

3 CONTRADICTION <-(7 1)
Time (see): CPU: 0.45 GC: 0.0

3+4=7

Total: 0.45

The proof is successful, so the root's status has been updated to show

that the node was certified by calling pvl.

_P

/: (c pvl)

(A (a b c) (IMP (-- (* a b) (* a e)) (---- b e)))

The tree representing the completed proof is written to the current file.

_W

_q
%

5. DISCUSSION

This section describes work that has been done using the editor as a front-end for theorem

proving and other applications to and extensions to unstructured structure editing.

5.1. Experience

The editor has been used extensively as a front-end for theorem provers. The editor was

originally conceived of as a theorem prover front-end; a number of proofs have been completed

0



using the editor in this capacity.

Sam Kamin and Myla Archer have successfully used the editor to do proofs in group

theory and category theory. David J. Carr has been a major user of the proof system, and has

used it to prove the homomorphism conditions necessary to show the implementation of the

tree-address data type correct with respect to a final algebra specification [Kam83] of that data

type. (A further discussion of ted and proving specifications follows below.) Finally, Carol

Beckman and David Hammerslag have used the system to prove (most) of the verification

conditions for a program from the Basic Linear Algebra Subprogram package.

5.2. Other Applleatlons

As the editor was designed to be application independent, it has been used in other

applications. The editor was modified to manipulate trees that represent hierarchical

information and to edit abstract syntax trees for a simple programming language.

5.2.1. Browse

The information tree editor, called browse, was created to allow users to peruse a hierarchy

of information about programs, narrowing the class of programs under consideration as he

moves down into the tree structure. Each internal node in the information tree contains

information about a related group of programs; in general, a child contains information about a

subset of those programs encompassed by the node's parent. Each leaf node in the tree contains

information for a single program.

Except for re-writing the editor's output routines to reflect the new interpretation of node

text, only minor changes were necessary (e.g. the locate command was re-written to search for

nodes containing certain strings in their text). Browse was used to create and maintain a data-

base of information concerning user contributed software.

5.2.2. FASE

Ted was originally developed to provide user-friendly access to theorem-provers, for use in

program verification. As such, it is connected to a program specification system called fase

[Kam83]. These connections, which we hope to strengthen in the future, include:

Syntax

fase has been designed to allow for user-defined syntax for discussing modules appearing in

the program specification. This syntax can also be used in ted nodes to state properties of

the modules to be proven.

Theory

Ted proofs inherit axioms relating to modules from the fase specifications. At present, this

is done manually, but we expect to have it automated in the near future. In the same way,

proofs of module implementations are based upon fase specifications and the associated

formalism.

Thus, ted is really just one major component of a system which includes (executable)

program specifications and program proofs. Eventually, we hope to expand this into a program

development system with the inclusion of program-editing and execution facilities (based upon

10
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the peg model), and program transformations.

5.2.3. Peg

A third use of tree editing which has been explored is program syntax tree editing. The

editor, peg, allows the user to construct programs by either explicitly constructing abstract

syntax trees or by filling a node with source code for the language. In the system, the user is

provided with tools to transform text into an abstract syntax tree and to compress syntax trees

back into text. Each node in the tree is labeled to indicate which syntactic entity the node or

subtree represents. As is the case with the proof system, the editor keeps track of which nodes

have been invalidated.

Although peg has only been implemented for a very restricted subset of the programming

language C, we feel that it demonstrates the advantages of unstructured syntax tree editing over

the syntax directed editing schemes discussed in section 1.

5.3. Conclusion

Our experience in applying our philosophy of structure editing has been favorable. We

have completed and used extensively a prototype system for managing formal proofs and have

experimented with other applications. We feel that as this system is made more general (that is,

less dependent on the application domain) and is given a better user front end more uses will be

found for unstructured structure editing.

11
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Chapter I

INTRODUCTION

A progranming environment supports the activity of developing and

maintaining software. New environments provide language-oriented tools such

as syntax-directed editors, whose usefulness is e_hanced because they embody

language-specific knowledge. When syntactic and semantic analysis occur early

in the cycle of program production, that is, during editing, the use of a

standard ccrmpiler is inefficient, for it must re-analyze the program before

generating code. Likewise, it is inefficient to recompile an entire file,

when the editor can determine that only portions of it need updating.

The pcg, or Pascal code generation, facility described here generates

code directly from the syntax trees produced by the SAGA syntax-directed

Pascal editor. By preserving the intermediate code used in the previous

compilation, it can limit recompilation to the routines actually modified by

editing.

I .I Compilation in Software Development Environments

Within the formalisms developed to aid the software lifecycle, the actual

process of writing code is itself a cycle: think, edit, compile (and link-edit
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if needed), test, and think again.

A software development environment provides tools for program creation

and maintenance. In the traditional software development environment, the

most visible tools are the editor and the compiler. The division of labor

between the two is as follows. The editor is used for entering and modifying

•code; it is text-oriented, suitable for the entry of any type of text. As a

general-purpose tool, the editor cannot provide assistance for any particular

language. The compiler, on the other hand, is specific to one progranming

language, and does two jobs: I) it must check the source code's syntax and

semantics, to ensure that the code constitutes a legal program in the

language, and 2) it must then translate that legal program into executable

form. Therefore, if the ccmpiler discovers static errors in the source file,

it aborts, and the progran_ner must return to the editing phase to make

corrections. The ccmpiler must be run repeatedly merely to obtain error

diagnoses, making checking for errors very costly [Campbell and Kirslis]

[Medina-Mora and Feiler].

The more helpful of traditional environments provide an automatic

facility to drive the compilation and link-editing phase, for

I

separately-compiled programs. The 'make' program [Feldman] under Unix is an

example. Its knowledge is embodied in I ) a user-supplied description of the

dependencies among the various files, and 2) the file system's timestamp which

records when a file was last modified. Given these, Unix make can determine

which files must be updated after a modification to one occurs. If a file has

not been reconstructed since the files from which it is built were modified,

1. Unix is a trademark of Bell Laboratories.
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I
make will recompile and re-link as needed to update the program.

In the traditional environment, the knowledge-rich tools are applied late I

in the coding cycle: the compiler provides feedback about the legality of the I

source only after the entire file has been produced, and the make facility

uses dependency information only to manage compilation between files. I

The earlier a problem is detected, the easier it is to correct. Newer

software development enviromnents often try to move the language-specific I

knowledge earlier into the coding cycle, and to use the information collected I

by such tools throughout the cycle in an integrated fashion. The environment

then has knowledge about the objects it manipulates and their current state; I

it can respond interactively to errors and anomalies, and it can respond to

queries about the objects' state [Medina-Mora and Feiler]. Lisp prograr_aing I

has long benefited from such language-specific environments as Interlisp

[Teitelman and Masinter]. The development of language-oriented tools is an I

active area of research [Campbell and Kirslis], [Donzeau-Gouge, Huet, Kahn, I

and iang], [Habermann], [Reiss], [Teitelbaum and Reps] ; the progra_ning

environment to be provided for a language is now often a consideration in I

language design [Goldberg] [Teitelman].

The syntax-directed editor is an example of the application of I

language-specific knowledge early in the coding cycle. Such an editor is I

knowledgeable about the syntax of a particular language or languages. It

ensures that the code entered is correct while the progra_ner enters it, I

providing immediate feedback about syntactic (and possibly semantic) errors

and misuses. The editor may also provide the progranmer with access to its I

knowledge about the language and about the source being edited--for instance,

allowing the progranmer to query about the followset of a particular token I

I

I
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[Campbell and Kirslis], or about the attributes of a defined identifier or

scope [Reiss], [Teitelman].

A language-oriented editor must perform syntactic analysis, the first

phase of traditional compilation. Usually the editor maintains the source

file in structured form, as a syntax tree, rather than as linear text

[Donzeau-Gouge, Huet, Kahn, and lang], [Medina-Mora and Feiler], [Teitelbaum

and Reps]. When a structured editor is used for program creation, the use of a

standard compiler entails the unparsing of the source file, followed by

redundant syntactic analysis.

Further, just as the programmer can benefit from the editor's feedback,

the compiler can benefit from knowledge of which sections of a source file

have been modified through editing. Such information can enable the compiler

to recompile only the affected routines within a file, providing a

separate-compilation-like facility for languages which do not support separate

compilation (or support it only grudgingly).

I. 2 Motivation

The SAGA project is investigating formal and practical aspects of

computer support for the software lifecycle [Campbell and Kirslis]. Within the

SAGA environment, epos is the language-oriented editor. The prcgra_ner enters

code as with a standard text editor, but can manipulate syntactic entities as

well as textual entities; epos incrementally parses and error-checks the code

as it is entered.

Epos up to now has not had a semantic-evaluation ccmponent; it has only



I

I
checked syntactic constraints. Also, the editor maintains SAGA files as parse

trees, rather than as text. Thus, compiling a SAGA file with a standard I

ccr_piler entails unparsing followed by redundant syntax analysis.

SAGA Make [Badger] was originally designed for Pascal 6000 on the Cyber; I

that syst_n supports the compilation of nested routines without compiling the I

routines which enclose them. Since Berkeley Unix's Pascal compiler pc does

not support this, much of SAGA Make's functionality was lost when the SAGA I

system became Unix-oriented.

In environments which include syntax-directed editors, it is thus most I

efficient for compilers to leave the task of syntax analysis to the editor;

such a compiler would generate code from the parse trees with which the editor I

works [Medina-Mora and Feiler]. SAGA Make demonstrates that the editor can be I

recording a modifications-trace as the programmer is modifying a pre-existing

file; when such information is available, compilation is most efficient if it I

only involves the routines which were affected by the re-edit.

The system described here, pcg, is such a compilation facility for Pascal I

under SAGA. Pcg's symbol table component is a semantic-evaluation component I

added to epos; its cede-generation phase is driven by the SAGA Make facility,

and generates intermediate code directly from a traversal of the parse trees I

used by the SAGA editor. Use of Make enables it to recompile intermediate

code incrementally upon re-edits of the Pascal source; this allows the I

progr_er to keep a Pascal program in one unit, as Pascal encourages, but I
still have the efficiency of separate compilation.

A goal for tools in the SAGA system is that they form standard components I

which can be composed to form new tools. Pcg demonstrates the composition of

SAGA tools to produce a new facility. Besides making use of information I

I

I
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generated by epos and Make, pcg uses the SAGA symbol table manager to store

and organize the semantic attributes it collects, and to pass this information

between phases.

Because it makes full use of the parse information collected by epos, Pcg

eliminates the redundant syntactic analysis in compilations generated by the

SAGA Make facility. Pcg is also a step towards making full use of the

semantic information in the SAGA environment. Its symbol table component

serves as a prototype interactive semantic component for the editor. It

provides interactive response to semantic errors, and an ability to query the

symbol table about the attributes of identifiers.

1 .3 Previous Work

Above we noted the traditional role of compilation in programming

environments; other divisions of labor between editor and translator are

possible. :

The classic alternative is the interpreter-based system which is standard

for Lisp. Source code is maintained internally in linked-list form, which can

be directly executed by the interpreter. The system routine which parses user

input thus produces a representation which is simultaneously the internal

representation of the source and its executable representation. Runtime

access to the source' s representation supports sophisticated debugging

facilities. Use of a run-time symbol table enables the progran_er to replace

routines at will. Because compiled routines are likewise managed by the

interpreter, and _icate with other routines via the symbol table, they
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I
too may be replaced freely; but they lose most of the benefits of the

debugging facilities. Interlisp [Teitelman and Masinter] is an advanced I

example of such a system. I

MENTOR [Donzeau-Gouge, Huet, Kahn, and lang], [Donzeau-Gouge, Lang, and

Melese] also maintains program source in structured form; code for various I

languages is maintained as abstract syntax trees. General tree-manipulation

tools are provided, and may be composed into procedures for manipulating I

particular languages. Editing is tree-oriented. MENTOR provides a variety of I

sophisticated interpreters to evaluate and transform the abstract syntax trees

which represent programs. Some perform semantic checking. Compilation is I

performed with standard compilers, after unparsing the source into text form.

In the Cornell Program Synthesizer [Teitelbaum and Reps], source files I

are maintained as abstract syntax trees with associated symbol-tables, and an

interpreter is provided which can directly execute these trees. Thus, I

although a compiler-oriented languages is used, compilation does not occur. I

The interpreter returns to the editor upon encountering a discontinuity in an

incomplete tree, so a partial program can be run up to that point; this allows I

editing and testing to be highly interleaved. The standard Synthesizer is an

educational rather than a development tool, and does not support compilation I

to machine code, nor separate compilation. I

PECAN [Reiss] attempts to provide the user with multiple views of a

program, including its syntax, semantics, and run-time behavior. Its compiler I

is oriented toward giving the user access to the semantics of programs. The

user may query about the symbol table associated with a particular scope, I

including identifiers and their attributes; the compiler also supports the

display of the expression tree representation of a given expression. PECAN's I

I

I
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design includes an interpreter, which will execute the internal form of

programs.

Cedar [Teitelman] is a compiler-oriented language whose environment

attempts to be interactive and experimental like interpretive environments.

To this end, it provides both a compiler and an interpreter, which can

interpret the full range of expressions of the language. Cedar's interpreter

allows its user to query about the type of expressions, and evaluate

type-valued expressions. The system keeps track of which files need to be

recompiled, though dependency-analysis is not performed.

The Incremental Programming Environment [Medina-Mora and Feller], under

the Gandalf project [Habermann], is the system which most closely resembles

pcg. It tries to provide the facilities and flexibility of interpreter-based

systems entirely via ccmpilation technology, and is oriented toward the

production of long-lived programs. IPE generates machine code from the syntax

trees which its syntax-directed editor produces, and performs incremental

recompilation on the procedural level. Rather than generating a new

executable object via a standard link-editor, as pcg does, IPE provides an

incremental linker which can replace the machine-code version of a changed

procedure within the executable object; it recompiles procedures in the

background, rather than upon user request, as pcg does. Unlike pcg, it

includes a debugger which is integrated with the rest of the system.

.o

I



1.4 Overview

The design and implementation of pcg is described here. Chapter 2

details the overall structure of the major components of the system, and their

design goals. Chapter 3 describes the implementation of pcg's first phase,

which maintains the symbol table. In chapter 4 we look at the implementation

of the second phase, which performs incremental reccmpilation. Chapter 5

_izes what was accomplished, and points up shortcomings and directions

for further research. Appendix A details the differences between pcg's Pascal
I

and ANSI Standard Pascal, and between pcg' s Pascal and Berkeley Pascal.

Appendix B is a Unix manual page for the pcg incremental reccmpiler.
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Chapter 2

DESIGN

Here we look at the design goals which pcg addresses, with particular

attention to how it is designed to interact with the other tools in the SAGA

system.

2. I Overall Structure

Pcg decomposes into two phases which must be applied in secfaence. In the

semantic processing phase, pcg's symbol table component generates or updates

the symbol table, given the program source in the form of a SAGA parse tree.

In the compilation phase, the incremental recompilation driver of pcg takes

the parse tree and symbol table, and compiles the program. The incremental

recompilation driver relies on the code generator for the actual generation of

intermediate code, which is transformed into machine code by the latter phases

of the Berkeley Pascal compiler.

The symbol table component has two configurations. The editor-resident

configuration constructs a symbol table concurrently with the editing of

program source, and so can provide interactive feedback to the editor's user.

Normally, the editor-resident symbol table component is invisible to the
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I
user. If the user makes a semantic error, the symbol table component opens a

window to emit an error message; also, the user can request information about I

the objects in the symbol table. The symbol table component can also be I

configured as a standalone program, which traverses a static parse tree to

construct or update the symbol table for that program. This configuration is I

meant to be called by other SAGA tools.

When a syntactically-correct parse tree and semantically-correct symbol I

table are available, compilation can occur. This phase of pcg is invoked just I

as a standard compiler would be. The incremental reccmpilation driver

controls the compilation process, using the modifications-trace generated by I

SAGA Make to determine which routines must be recompiied. Fol- the routines

which have been modified, or newly created, the driver calls the code I

generator, to generate intermediate code. The driver merges the new code with

the unchanged code from previous compilations, and invokes the latter phases I

of the Berkeley Pascal ccmpiler to complete compilation. I

Figure 1 shows the interaction between the SAGA Pascal editor and pcg;

the editor-resident symbol table component is displayed. The pcg system is I

separated into self-contained modules with well-defined interfaces, so that

the modification or replacement of one component will not disrupt the I

functionality of the others. I
Although SAGA syntax-directed editors have been generated for several

languages, the Pascal editor is the base editor. Thus, pcg compiles Pascal. I

The language it accepts is currently a Pascal subset, which soon will be

extended to full Pascal; see Appendix A. The particular Pascal dialect is I

Berkeley Pascal [Joy, Graham, and Haley]. I

I
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Figure I. The SAGA Pascal editor and pcg.
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Below we look at the design goals for the semantic phase's symbol table

component,and the compilation phase's incremental recompilation driver and

code generator.

2.2 Semantic Processing Phase

The symbol table component has two configurations, and serves as a

prototype semantic component for the SAGA system. It had several design

goals.

First, a goal for SAGA tools in general is that they form standardized,

reusable modules which interact through well-defined interfaces [Campbell and

Kirslis]. Therefore, the symbol table component tries to make as few

assumptions as possible about eposand the internals of the parse tree files.

To this end, pcg's symbol table component uses only the standard node-access

interface to obtain parse-tree information; to communicate with the editor

proper and with the progran_aer, it uses only the standard semantic-evaluation

interface. Though dependence on the structure of the Pascal granm_r is

unavoidable, the symbol table component only assumes that the parse tree is

well-structured with respect to that grammar, and that the tree's abstract

internal relationships will not change without explicit editing actions. The

symbol table component does not, for instance, store the internal node-indices

of identifiers whose attributes it records, and thus the SAGA tree ccmpactor

could be run on a parse tree without invalidating the associated symbol

table.

A second goal for the symbol table component is an ability to be
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configured as a s_nantic evaluator, resident in the editor, or as a separate

non-interactive process which performs semantic checking and symbol-table

construction. Semantic evaluation can degrade the performance of

syntax-directed editors [Medina-Mora and Feiler], and so the availability of a

standalone configuration adds flexibility which may be needed when system

resources are strained. In this configuration, the symbol table component

resembles the semantic processing of a more traditional batch compiler.

A third quality sought in the symbol table component is the ability to

collect information for two related but different tasks. I ) As the

symbol-table constructor for the pcg compilation system, the symbol table

ccmponent must collect the information needed for compilation. 2) Like a

standard compiler, it also must be able to provide diagnostics about semantic

errors and anomalies; additionally, to make use of the unique interactive

capabilities of an editor-resident evaluator, the in-editor version can

respond to user queries about the attributes of identifiers.

Fourth, in its role as a prototype semantic evaluator for epos, the

symbol table component of pcg provides some support to incremental

modification of the source program. Thus, when the user modifies the parse

tree by re-editing, the in-editor symbol table component responds with

consistent updates to (or deletions of) symbol table entries.

Finally, the symbol table component uses the SAGA Symbol Table Manager

[Richards ] for storing, organizing, and retrieving the attributes it

detected. This is the first major exercising of the symbol table manager,

which was designed as a general facility for software development environments

in which multiple tools would have to exchange semantic information.

!
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!
2.3 Compilation Phase

!

The compilation phase is managed by the incremental recompilation driver; N

the actual generation of intermediate code is performed by the code

generator. We first look at the design decisions for the incremental I

recompiler as a whole.

The first design decision for the incremental recompiler was that the I

replacement unit for incremental updating would be the prccedure, n

Interpreter-based incremental systems can update their executable code on the

expression level [Teitelbaum and Reps]; interpreted code need not deal with n

the peculiarities of hardware, and can be designed to reflect the structure of

the source language. By contrast, compiled code often bears only implicit U

structural similarity to the original source. Because the procedure or

function is a self-contained unit with a well-defined interface, recompilation l

on the procedural level is a reasonable implementation for incremental I
mm

recompilation [Medina-Mora and Feiler].

The next design decision which determined the structure of the N

incremental recompiler was that it would generate intermediate code, and use a
mm

standard machine-code generating second pass to complete compilation. A code l

generator was developed, which generates intermediate code from a parse tree n

and symbol table. The code produced is binary "portable C compiler"

intermediate code [Kessler], hereafter called (with some inaccuracy) N

'pcc-code'. This intermediate representation is a binary, packed version of

the original portable C compiler intermediate code. It is largely N
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machine-independent. The Berkeley Pascal Compiler pc, and FORTRAN compiler

f77, use pcc-code as their interface to the _n machine-specific backend,

which generates machine code. Use of this interface enhances the portability

of pcg among Unix systems, with the other SAGA tools.

2.3. I Incremental Reccmpilation Driver

When a user invokes pcg, the ccmponent of the pcg system that responds is

the incremental recompilation driver. This component is the top level for the

compilation phase of pcg. Given a SAGA Pascal file, it does what is necessary

to ensure that its executable object is up-to-date with respect to its

SOurce.

The first design decision for the driver was that it would use SAGA

Make's modifications-trace as a guide to generating new intermediate code.

SAGA Make [Badger] was designed to be a largely language-independent facility

in two phases. Its first phase, resident in the editor, keeps track of which

routines are modified, or have their environments modified, such that they

must be reccmpiled. Make' s second phase used this modifications-trace to

build a shell script which would recompile the program, and then it executed

that script; this phase suffered from Berkeley Pascal's lack of facilities for

compiling nested routines.

A goal met by virtue of using Make is that the code generator need only

recompile the minimal number of routines necessary for updating the pcc-code

and regenerating the object [Badger]. Pcg therefore preserves the pcc-code

file which resulted from the most recent compilation, so that unmodified

routines can be reused. Alternately, the incremental recompiler can be

ordered to discard the old pcc-code and regenerate the entire program from
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scratch.

A third property sought in the design of the incremental reoompiler is

that its user interface appear as similar to that of a standard compiler as

possible. Pcg can, therefore, be invoked from within Unix make scripts just

as can pc. Similarly, pcg can easily interface with configuration management

schemes which make use of standard compilers [Kirslis, Terwilliger, and

Campbell], [Estublier, Ghoul, and Krakowiak].

This decision implies that pcg does not perform compilations in the

background during editing, as does IPE [Medina-Mora and Feiler]. However,

I
I
I

I
I
i

such a system were desired, epos's capability of spawning filter processes i
RE

could straightforwardly implement it.

The incremental recompilation driver tries to behave reasonably if given i

a SAGA file for which no symbol table, or no modifications-trace, exists,

invoking the standalone symbol table component to build a symbol table if i

i

necessary.

i
2.3.2 Code Generation

The code-generator is modeled on the first pass of the Berkeley Pascal

compiler. It produces poc-code, which the driver then provides to the later

i

i
phases of pc. i

in
As a simplifying assumption, the code generator follows pc's internal

i

logic and algorithms wherever possible. The Berkeley Pascal compiler has i

proven itself as a tool for software development; most of the SAGA system,
n

including most of pcg itself, is compiled with pc. Pc provides a reasonable i

separate compilation facility, and the ability to call routines written in n

other portable c compiler - based languages, including Unix system calls [Joy,

!
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Graham, and I_ley].

This design decision allows pcg to use pc's latter phases unchanged.

Basing the code generator on the Berkeley oompiler also enables a simple test

of its output: if the pcc-code that it generates differs in structure from

that generated by pc for a given Pascal program, then something untoward is

going on.

For the sake of modularity, the code-generator's job was limited to

producing pcc-code, given a parse tree, a symbol table, and a node which is

the root of a subtree for a routine. Managing the further phases of

compilation is left to the incremental recompiler.

The next chapters provides an overview of the implementation which tries

to meet these criteria.
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Chapter 3

SEMANTICPHASEIMP_ATION

These two chapters examine significant implementation details of pcg. In

looking at the issues in its implementation, we pay special attention to pcg's

interaction with the other tools in the SAGA system, and with the Berkeley

Pascal compiler.

In this chapter we will look at the implementation of the symbol table

component of pcg, which performs the semantic phase of pcg's processing; in

the next, we will look at the compilation phase.

3. I Semantic Processing

The problem of semantic analysis of programs is nontrivial.

syntactic task of parsing has been simplified by the development of the

context free grammar formalism [Aho and Ullman], to the extent that automated

tools such as YACC [Johnson2] and Mystro[Noonan and Collins] can construct

parsers from a formal description of a granmar. But no fully satisfactory

formalism for semantics has been developed, although attribute-gran_nar based

systems for automated semantic analysis and compilation are an active research

area [Paulson], [Ganapathi and Fischer], [Reps].
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[Reps ] distinguishes between imperative and declarative semantic

evaluators. The former is procedurally specified, the latter uses a formal

specification to enable the automatic generation of an evaluator. Imperative

evaluators must specify both semantic actions, which are to be performed upon

the insertion of program text, and semantic retractions, which update the

symbol table when a deletion occurs.

The declarative method attempts to avoid the need for retractions, by

eschewing the use of a global symbol table whose state must be kept consistent

with the state of the syntax tree. Rather, it stores semantic information

locally, throughout an attributed tree. It is unclear whether such localized

context is sufficient in general [Johnson and Fischer]. An attribute-granmar

based evaluator, combining both declarative and imperative aspects, is under

development for the SAGA environment [Beshers and Campbell]. In the meantime,

the symbol table component of pcg provides the pcg system with an ad-hoc,

imperative mechanism for collecting semantic attributes and error-checking

SAGA Pascal source.

3.2 The User Interface

To the user of epos, the symbol table component of pcg is merely another

feature in the editor. The editor proper reports when the user enters

syntactically-incorrect text, and highlights the unparseable portion of the

program. Similarly, the symbol table component opens a window and emits an

error message when the user enters a semantically-incorrect declaration or

statement; the offending string within the program is highlighted. If the

I
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user modifies a declaration in such a way that previously-entered text which

depends on that declaration is now incorrect, the error is reported and the

I

I
I

now-incorrect strings highlighted. The attempt to re-declare an identifier, []
within the same block as a previous declaration of that identifier, causes the []

generation of an error message, the highlighting of the offending identifier, i
im

and the disregarding of the new declaration. If a new identifier is entered

with a semantically-malformed declaration, the identifier is entered into the I

symbol table, but its attributes note that it is misdeclared. Upon correction

of an error, the corrected code is displayed in the normal font again, i

The editor-resident symbol table component also provides the user with I

the ability to query the symbol table about the attributes of

currently-defined identifiers, including both standard and user-defined types, I

variables, and routines. A similar facility is provided in PECAN [Reiss] and

Cedar [Teitelman]. This facility is particularly useful in a separate i

compilation environment; for instance, one can check the number and types of
[]

the parameters of an imported routine, before entering a call to that i

routine. It is also useful when the symbol table component informs the user i
I

that a symbol has been misused; the symbol's attributes can be inspected, to

determine how to correct the mistake. Normally, the search for an identifier I

starts in the current block and proceeds outwards until a definition is
m

found. It is also possible to enquire about symbols defined within contexts I

which are nested within the user's current context; one prefixes the i

identifier with a path of context names separated by dots. For instance, to

enquire about the field 'i ' within the record 'rec', declared within the i

nested function 'ftn', one enquires about 'ftn.rec.i'.
I

The standalone symbol table component is oriented toward use as a tool by I
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other tools, unlike the editor-resident configuration of the symbol table

component. The standalone configuration is a self-contained program that

takes one argument, a SAGA file name. It loads an existing symbol table, if

present, and then traverses the parse tree, to produce an updated symbol

table. Nodes generating semantic errors are marked in the parse tree, and the

error messages written to standard output.

3.3 Overall Structure

The task of semantic analysis is significantly complicated by a need to

support incremental modifications of the program source. Existing

declarations can be modified or deleted, necessitating the change or removal

of symbol table entries; such changes can correct or invalidate other entries

which reference the objects declared. Existing executable statements are also

subject to modification or deletion, and must be re-checked for legality. The

user of a syntax-directed editor can enter syntactically-incorrect or

incomplete code, but the symbol table must not thereby be left in an

inconsistent state.

Pcg' s symbol table component is an imperative evaluator, since the

semantic analysis is specified procedurally; it binds action and retraction

procedures to granmar productions. When the editor reduces by such a

production, or when the standalone symbol table component encounters such a

production during tree traversal, then the associated procedure is invoked.

The procedure traverses the affected subtree to gather needed information, and

then it updates the symbol table.

I
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Below we explore the linkages between the gr_r of Pascal and the

symbol table ccrnponent; this provides background for understanding the use of

actions and retractions. Next we look at the symbol table ccmponent's use of

the SAGA symbol table manager; in this context, the use of action and

retraction routines is described.

3.4 The Symbol Table Ccmponent and the Pascal Gr_r

To support incremental evaluation, pcg' s symbol table component must

respond appropriately to modifications in program text. To this end, it

distinguishes three special subsets of the production rules in the LAI_R(I )

Pascal granmar used by the current Mystro-based SAGA editor [Aho and Ullman],

[Noonan and Collins]. These subsets are the action productions, the checkable

productions, and the user productions.

3.4. I Action productions

Certain productions are distinguished as being 'action productions '.

When an action production is encountered, an entry is installed into the

symbol table. In general, an action production roots a subtree of least

height such that the subtree contains all the information needed to determine

the attributes of an identifier. By delaying until all information needed is

present, the symbol table component does not need to maintain external data

structures containing partial attributes, which would have to be handled

specially if user input were interrupted or discovered to be syntactically

malformed. On the other hand, by not delaying until a reduction to a
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higher-level nonterminal is performed, the symbol table ccmponent can respond

most in_nediately to erroneous input.

3.4.2 Checkable productions

A single production lies in the set of 'checkable productions'. This is

the production whose left hand side is <statement>. Within a statement,

expressions must be typechecked, the use of expressions must be checked for

legality, and references to declared entities must be recorded. Such actions

are performed when the symbol table component encounters a reduction to

<statement >.

3.4.3 User productions

The third subset of Pascal granm_r rules is the set of 'user

productions' These are the productions which contain user-supplied

terminals; reduction by such a grannar rule, during the non-reparsing first

phase of the parse, indicates that a tree modification has occurred, which

should be analyzed. The user productions are significant in the

editor-resident semantic phase. The epos parser is incremental, and attempts

to reparse the minimal amount needed to fit changes into the parse tree

[Ghezzi and Mandrioli]; where possible, it shifts entire subtrees, rather than

their frontiers. It is thus possible that a user modification can be

accommodated into the tree, without the reparse propagating up to the action

or checkable production which is its ancestor. If a reduction by a user

production was not eventually followed with a reduction by an action or

checkable production, the symbol table component detects the need to climb to

I
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that ancestor and re-evaluate the subtree it roots.

3.5 The Symbol Table Component and the Symbol Table Manager

Much of the work of the symbol table ccmponent is simplified by its use

of the SAGA symbol table manager.

3.5. I Attributes

Use of the symbol table manager is organized around the attributes which

one sets up for the given application. Symbol table manager primitives are

used to record symbol definitions and symbol references; (attribute, value)

pairs can be attached to such entries. The symbol table manager's user must

specify what type the value of an attribute may take on.

Attributes are identified by strings stored in the symbol table's strings

section; referring to a particular attribute is accomplished by a reference to

that string' s internal identifying tag. Thus, for every attribute one

defines, one must maintain a variable containing that tag, to enable one to

refer to the attribute. This is an impetus toward defining record-valued

attributes; such an attribute-complex can hold all the values associated with

a given class of symbol.

By making the user-defined attribute type a variant record, it can be

used for several attributes. The symbol table component uses the user-defined

attribute type for four such 'compound attributes'; the two most important are

called NameAttributes and TypeDefAttributes.

The symbol table component's use of these attributes is straightforward.
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Consider an example Of an action routine. When the symbol table ccmponent

encounters the production

<var_decl_list> ::= <variable_list> : <type>

it invokes an action routine to inspect the <type> subtree. If it is an

actual type definition, then the subtree is traversed and the attributes of

the type collected. For example, if the subtree defines a subrange type, the

host type and endpoints are recorded. The routine returns an anonymous

type-definition symbol, which has one attribute containing the description of

that type. Alternately, the <type> subtree may not be a new type definition,

but an identifier: a reference to a previously-declared type. The symbol

table entry bound to that identifier is retrieved, and its NameAttributes

inspected to determine which anonymous type-definition symbol it names.

In either case, once the <type> subtree has been handled, another action

routine traverses the list of variables. For each, it inserts a non-anonymous

symbol, to be known by the identifier indicated; the new symbol' s

NameAttributes specify that it names a variable, whose type is that

previously-obtained type-definition symbol.

The incremental parser within epos must sometimes reparse

previously-analyzed code, to analyze new material inserted into that code.

The possibility arises that an action routine would be called a second time,

causing a spurious "identifier previously declared" error. An addition has

been made to epos's semantic interface which notifies the symbol table

component when a reparse moves into previously-parsed text; action routines

are not called for such reductions.

I
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3.5.2 Contexts

With the symbol table manager, when one inserts a symbol definition or

symbol reference, one indicates the 'context' in which to place it. The main

program, each procedure, each function, and each record type, has an

associated context. Identifiers declared within blocks or records are stored

within their contexts. To retrieve a symbol, given an identifier, one

specifies a context in which to search; contexts can be nested, and searches

proceed from an inner context outward. This makes the implementation of

Pascal's block-structured scoping rules trivial.

More complex context interactions are generated by the use of grafted

contexts. Thus, for example, when pcg enters the scope of a Pascal 'with'

statement, it grafts a temporary context onto the current block's context.

When a variable is encountered, the search for its definition is first

performed in the context of the indicated record, seeking the identifier as a

field; then in the current block, seeking it as a variable; and then outwards

in any outer blocks. Variables and fields can therefore be handled by the

same code; use of the symbol table manager promotes the orthogonal

manipulation of symbols.

3.5.3 Symbol References

Besides symbol definitions, the symbol table manager also supports the

recording of symbol references. If a symbol is referred to in a given

context, a reference entry can be made, and attributes given to it; the symbol

definition can be recovered from the symbol reference, and any recorded
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references can be recovered from the definition. Further, if a definition is

deleted, but there exists a definition of that identifier in an outer block,

any references made to the deleted symbol becomes attached to the now-visible

outer definition.

This autcmatic action of the symbol table manager is very useful in

dealing with deletions in an incremental environment. In the standard Cornell

Program Synthesizer, for instance, the deletion of a declaration invalidates

the entire symbol table, and necessitates re-traversing the entire parse tree

2

to build a new one [Teitelba_n and Reps]. In pcg's symbol table component,

outer blocks are not invalidated, since the deleted symbol was invisible

there, and any nested blocks which do not refer to the deleted symbol need not

be re-evaluated.

3.5.4 Retractions, Attributes, and References

We saw above that the action routines are grammar-driven. In contrast,

the retraction routines are driven more by the structure of the

attribute-records. The top-level retraction routine traverses the subtree

given to it, seeking definitions of identifiers. On encountering such a

definition, the identifier's attributes are retrieved from the symbol table,

and further actions are based on those attributes. Consider the variable

declaration described above. The variable' s symbol table entry must be

deleted. The type recorded for it is also inspected. If its attributes

indicate that no identifier was hound to it, then the type definition entry is

2. This is handled more economically in Synthesizer-Generator based systems,

which use attributed trees rather than a standard symbol table [Reps].

I
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deleted. Otherwise, the entry which records that the variable referenced the

type is deleted.

If references to the deleted entry existed, then the contexts which made

those references are noted. Upon completion of the retraction, those contexts

are re-evaluated, to ensure their validity. Re-evaluation consists simply of

the retraction of entries defined in the routine's subtree, followed by a new

tree traversal to re-install these entries and re-inspect the routine's

executable statements.

3.5.5 Other Features and Limitations

Each symbol table primitive returns an error code. This provides

considerable consistency-checking to the symbol table component; if an

internal error occurs, then at some point a symbol-table primitive will be

unable to complete its task, and an error will be reported.

Limitations of the prototype symbol table manager also affect the symbol

table component. No provision is made for anonymous symbols, nor for lists of

symbols; the symbol table component must simulate these features.

The symbol table manager is oriented toward the support of separate

compilation, by allowing multiple symbol tables to be open simultaneously;

however, the support presently provided is limited by the requirement that

each such table have a unique permanent identifier. This prevents the re-use

of standard modules, if the permanent-ids assigned to them clash with the

identifiers of other modules already in use. A new version of the symbol

table manager has been proposed; this new version will provide a virtual

naming scheme for multiple open tables. Because this version is not currently

available, pcg does not yet support separate compilation.
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In the Berkeley Pascal model of separate compilation, included header

files contain declarations of external entities; these are considered to be

global, that is, declared at the level of the main program context. Although

the incremental recfmpiler can compile separate code modules, the limitation

mentioned above makes it is currently impossible for references to be made

across modules. Enabling separate compilation in pcg should not be difficult

when the new facility becomes available.

The next chapter is an overview of the implementation of pcg's next

phase, the incremental recompilation phase.
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Chapter 4

COMPILATIONPHASEIMP_ATION

Here we examine someof the issues involved in the implementation of the

compilation phase of pcg. The major work of compilation is performed by the

code generator, which generates pcc-code from a SAGAparse tree and a symbol

table. Incremental recompilation is achieved by the incremental recompilation

driver, which calls the code generator as needed to generate new code for

modified routines. First, we look at the code generator.

4. I Code Generation

The c0de-generator is very similar to the pc0 phase of the Berkeley

Pascal compiler. It is essentially a translation into Pascal of the relevant

parts of that program; instead of pc's namelist and parse tree, the SAGA

symbol table and parse tree are its input. As output, it produces the same

sort of Portable C compiler intermediate code as pc0 produces.

To examine the code generation component of pcg, we will first look at

pcc-code itself, and its use in representing Pascal programs. Next we view

the overall structure of the Berkeley Pascal compiler, and the system it

implements. Then we will be ready to examine the general structure of the pcg
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4.1.1 Pcc-code

The structure and content of pcc-code is described in [Kessler ]; the

philosophy and organization of the Portable C compiler is detailed in

[Johnsonl ].

Pcc-code is a postorder linearization of the binary expression trees, and

flow-of-control operators, produced by the Portable C compiler to represent C

code. It makes explicit the content of the original C program, and decomposes

it into simpler structures. For instance, in pcc-code, all operators and

operands are explicitly typed, and needed conversion operators inserted.

Also, C's structured statements are converted into simple tests and jumps.

Much of pcc-code is machine independent. The first pass is required to

handle r'_=_'t-_in m_nh'im: rl==r'_nrl:ni" r,_n:i--rllrff-: :11nh m_ rmNf-'in_ n'rnlr_n1_ mnrl

epilogues, the code for switch (that is, case) statements, and

initializations. This is done by emitting assembly code which will be passed

unchanged through the next pass, which generates assembler from pcc-code.

Since pcc-code was designed to represent C, there is some mismatch to be

dealt with in representing Pascal code. To represent Pascal expressions, C's

wealth of operators are more than sufficient; many pcc-code operators are

never used by pc0. On the other hand, Pascal's rich type structure sometimes

requires simulation; several Pascal types (for instance, sets) are by default

represented as C structures, and operations on these types are implemented by

library functions. (The overhead thus incurred is obviated somewhat by the

pc2 phase of the Berkeley compiler, described below.) C's structure type is

convenient for such use because it is a structured type which may be the

I
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target of assignment, may be passed to functions, and may be returned

functions. (But C's support for these operations on structures causes some

complication in pcc-code; pcc-code must assume, for instance, that the value

of a structure-valued expression is actually a pointer to a structure, rather

than the structure itself. )

I

4.1.2 Structure of the Berkeley Pascal Compiler

The Berkeley Pascal compiler is a five-pass compiler. The first pass,

pc0, does syntax analysis, semantic checking, and generation of pcc-code. The

second pass, pcl, is actually the fl pass of the f77 FORTRAN compiler; this is

the pass derived from the second pass of the Portable C compiler, which takes

binary pcc-code as input and produces assembler as output. The resulting

assembly language is the input to pc2, the inline expander. This filter

passes most of the assembler unchanged; calls on frequently-used system

functions are expanded in place into the assembly code which implements them.

Pc2's output is given to the Unix assembler as, which produces unlinked

binary. The pc3 phase examines the symbol tables of binaries produced in this

way, prior to linking; it does several checks on the use of globally-visible

routines and variables, to enforce the rules of separate compilation in

Berkeley Pascal. Finally, the binary is link-edited via Unix's id, to produce

an executable object.

Because the pcg code generator produces pcc-code such as the pc0 phase

would produce, pcg can run the latter four phases of pc unchanged. Thus, pc0

is the pass most of interest here.

Pc0 is driven by its YACC-based parser [Johnson2]. The parser constructs

the parse tree such that the structure of a subtree can be determined by
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examining its first node. As the parser recognizes declarations, routines are

invoked to make entries in pc0' s namelist (symbol table). The structure of

namelist entries is a bit baroque, consisting of many overloaded fields,

rather than a variant record structure such as is encouraged by the SAGA

symbol table manager. Whenever the parser recognizes a complete procedure,

function, or program, a function is" invoked which traverses the resulting

subtree simultaneously to check semantics and to generate pcc-code.

The runtime system created by the Berkeley compiler is essentially that

of the Berkeley Pascal interpreter px, as described in [Joy and McKusick]. Px

defines many system functions to implement both Pascal operators and built-in

routines, such as the input and output procedures. This simplifies the use of

this run-time system with C-oriented pcc-code; where pcc-code is deficient,

the appropriate library function can be used. The px runtime system is almost

purely stack oriented. The objects operated on are assumed to be on the

stack, or else in e_e heap area, =_ =_ __d on by __h.einterpreter's

Pascal-oriented operators. In contrast, the pc system' s use of pcc-code

enables it to make use of the abilities of the fl code generator, which

generates assembly code targeted for the actual hardware, and attempts to

place operands in registers as much as possible. Pc uses the stack for

activation records, structured objects, parameter-passing, and extra

temporaries. A display is maintained for referencing nonlocal variables from

nested routines.

4 .I .3 Structure of the Pcg Code Generator

The interface to pcg's code generator is simple. It takes a node, a

context, and a job-specification; the node must be the root of a procedure,

I
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function, or program subtree, and the context must be the symbol-table context

associated with that routine. Based on the job-specification, the code

generator either generates code for the indicated routine, or else performs

semantic checks on the statements within the routine.

For ease of interfacing with the other SAGA tools, particularly the

symbol table manager, the code generator is implemented in Pascal. The

low-level routines which actually produce the binary pcc-code are written in

C, as are a set of routine which are used for bit-level operations which are

occasionally necessary.

[Medina-Mora and Feiler ] note that an advantage of compiler-based

environments over those which are interpreter-based is the ability to produce

code for a target machine which is different from the host on which the

environment is running. The current implementation of the pcg code generator

3

is targeted for the VAX . The pc sources can be configured to generate code

for the VAX or for the MC68000, and this capability has been provided in pcg,

although the 68000-oriented code-generator has not been tested.

The pcg code generator routines can be partitioned into four sets: those

which interface with the symbol table; those which actually walk the parse

tree and generate intermediate code; those support routines which implement

the machine-dependent aspects of code generation; and those support routines

which implement the aspects of code generation dependent on the Pascal runtime

system.

3. Vax is a trademark of Digital Equipment Corporation.
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4. I. 3. I Symbol table interface.

To prevent too tight a coupling between the symbol table component and

the code generator ccmponent, all symbol table accesses are isolated into a

set of routines which are invoked to query the symbol table, and to change the

context. Thus, for example, predicates are provided to indicate the

attributes of types and variables; the isintegral predicate returns true if

its argument is type integer, or a user-defined type which is a subrange of

integer. Similarly, graftrecordcontext grafts a temporary context onto the

current context, to implement the scoping effect of a Pascal 'with' :statement

or field selector. This modularity should ease the transition to the

attribute-grammar based evaluator planned for the SAGA system.

4. I. 3.2 Code-producing routines.

The pcc-code producing routines walk the parse tree to emit C code.

Because they must walk the tree, they are very dependent on the structure of

the Pascal granm_r; for instance, the structure expected in a subtree is

determined by checking its production number. This tight coupling is slightly

alleviated by the usage of symbollic names (Pascal constants) for the

rule-numbers in the granmar; however, there is no way to eliminate the

dependence on the internal structure of the productions.

The code-producing routines mirror the Algol-family structure of Pascal

and C. The top-level routine generates code for a procedure, function, or

program; it handles program unit prologues and epilogues, and the emitting of

symbol table directives which provide information to pc3 and the Unix

I
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debugger. It invokes other routines to deal with the executable statements in

the program unit's body.

For each Pascal statement, there is a procedure to traverse its subtree

and emit code; these emit the flow-of-control operators. At the bottom level

are the routines to generate code for 1-values (locations) and r-values

(expressions); these emit the pcc-code expression trees.

4. I. 3.3 Machine-dependent aspects.

The third class of routines in the code generator are those which

implement machine-dependent aspects of code generation. An example is the

alignment module, which is used by by the symbol table component to allocate

offsets for variables; another is the temporaries module, which handles the

allocation of temporary variables for the current block (placing them in

registers when possible).

4. I. 3.4 Runtime system routines.

The fourth group of routines are those which support the use of the

Berkeley Pascal run-time system. A good example of this group is the sets

module. Routines from this module have diverse duties relating to the Pascal

set type, such as determining whether a set expression is a constant set,

determining the type of a constant set, or emitting the proper Pascal-system

function call to perform the indicated set operation.
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4.2 Incremental Recompilation

The code generator component of pcg is controlled by the incr_nental

recompilation driver. The driver for the pcg incremental recompiler is

straightforward. When pcg is invoked to compile a SAGA file, the driver first

checks that a symbol table file exists within the SAGA directory which

implements the SAGA file; if no symbol table exists, the standalone symbol

table component is invoked to generate one. Next, the incremental recompiler

checks that a modifications-trace is available. If not, then it assumes that

the entire file is to be reccmpiled. Alternately, the user may demand that

the incremental recompiler ignore the modifications-trace, and recompile the

entire file.

When a SAGA source file has been previously compiled with pcg, its SAGA

directory will contain two additional file. One is the pcc-code which

resulted from the last compilation. The other is a list of the routines

present in that file; for each routine, tile location of its last word of code,

within the pcc-code file, is recorded.

The process of recompilation is a simultaneous post-order traversal of

three tree of routines: the tree of routines represented by the parse tree,

and the linearizations of that tree present in the two files described above.

For each routine in the parse tree, if the modifications-trace indicates that

the routine must be recompiled (or if the modifications-trace is unavailable),

then the code-generator is invoked to generate new pcc-code from the routine's

subtree and its context in the symbol table. The pointer into the file of old

I
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pcc-code is advanced past the routine. If the modifications-trace indicates

that the routine need not be recompiled, then its pcc-code from the old

compilation is copied verabatim into the new file, advancing the pointer.

Pcg then invokes the later phases of the Berkeley Pascal compiler, with

the new pcc-code as input, to complete the compilation. If the -c (separate

compilation) option was specified, then the last two phases of pc are not run,

and the result of the compilation is an unlinked object, just as with pc. If

the separate compilation option was not invoked, then an executable object is

produced. In either case, the process produces three other files: a new

pcc-code file, a new routine-locations file, and a modifications trace which

now indicates that all routines are up-to-date.
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Chapter 5

OONCI/JSION

Pcg demonstrates that a compiler in a language-oriented environment can

make use of the information gathered by other tools to improve the efficiency

of compilation. The parse trees produced by the epos syntax-directed editor

are sufficient for ccrnpilation; an interactive semantic evaluator, implemented

with the symbol table manager, can build a symbol table to enable compilation;

and the modifications-trace collected by SAGA Make can be used to eliminate

redundant compilations. The final result shows the usefulness of tools which

share information to avoid duplication of effort.

Pcg demonstrates the composition of tools in the SAGA environment. The

SAGA tools pcg uses had not previously all been required to cooperate

simultaneously. Occasionally a tool did not correctly implement its

interface, or the interfaces of two tools clashed so that they could not

con_nunicate with each other without difficulty. Though such real-world

difficulties occurred, the tools were composed to generate a complex

application.

!
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5.1 Statistics for Example Programs

Pcg moves the task of symbol table construction, along with the task of

syntactic analysis, from the translation phase of the coding cycle into the

editing phase. Further, it attempts to _nprove the efficiency of compilation

by incrementally compiling within files. We consider figures on time and

space costs collected for two sample programs.

I
I

I
I

I

I
i
i

epos without
semantic

evaluation

epos with
semantic

evaluation

declarat ions. p

(147 lines )

11.0 user seconds

3.0 system seconds

23.2 user seconds

4.8 system seconds

pxre f.p

(389 lines)

43.8 user seconds

6.7 system seconds

61.3 user seconds

9.6 system seconds

I
I
I

Table I. Times required for the editor to read and

analyze two files.

Table 1 shows the time required for epos to read in and analyze two

files: the first consists entirely of ccmplex declarations; the second,

Wirth's cross-reference program, is a more realistic mix of declarations and

code. In the first case, the symbol table component makes the editor run

approximately twice as slow. These worst-case figures may be misleading. In

actual interactive editing, the time cost of semantic evaluation is spread out

over many interactions; subjectively, the response time of the editor does not

deteriorate significantly when semantics evaluation is included.
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declarations, p pxref, p

standard text 3682 7955

executable object 15360 27648

pcc-code 4308 38592

parse tree 69644 262156

Table 2. Size in bytes of four representations of two
files.

Table 2 shows t/%at, although the pcc-code representation can be

significantly larger than the straight text representation of a given program,

it is not expensive compared to the current SAGA parse tree representation.

Thus, preserving pcc-code files between compilations is a reasonable course.

pc0

pc

code

gen_ator

pcg

declarations, p

0.8 user seconds

0.8 system seconds

4.0 user seconds

3.7 system seconds

pxre f.p

5.7 user seconds

I. I system seconds

31.6 user seconds

6.8 system seconds

Table 3. Compilation times for two files, in which one

20-1ine procedure was modified.

Does pcg improve the efficiency of compilations? Table 3 shows that pcg

performs code generation faster than pc0, but, unfortunately, the first phase

consumes only about a fifth of the time of a compilation. The latter four

phases of compilation are shared by pc and pcg; peg' s incremental

recompilation efforts are aimed at efficiently producing an intermediate code

version of a file, which must then be given to the non-incremental pc backend

to complete compilation.

Certain implementation problems remain. As a prototype, pcg is

I
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insufficient for a true development environment. It will soon be extended to

support full Pascal, but it must also support separate compilation if it is to

be useful; this requires the resolution of the limitation in the symbol table

manager previously mentioned.

5.2 Future Directions

Pcg suggests several directions for future work.

The most fundamental limitation of the pcg system is its dependence on a

non-incremental machine-code generator. Any efficiency gained from

incremental recompilation in the early phase is overshadowed by the time

required to recompile the resulting code non-incrementally. A straightforward

extension to pcg would be a facility for merging assembly-language rather than

intermediate-code files; preserving assembly-language between compilations

would make the first machine-dependent phase of compilation incremental. But

recompilation should be incremental throughout all phases. A facility for

merging binaries, such as existed in the original Cyber-based SAGA Make, or an

incremental loader, such as in IPE, is required. Once such a facility is

provided, pcg-style code generators can be developed for a variety of

languages, and use the con_nonbackend. •

If one is willing to sacrifice language-independence, then SAGA Make can

be made more efficient, by using the symbol table manager's ability to record

symbol references. Nested routines which do not reference a modified

declaration in the outer environment need not be recompiled in response to

that modification. Further, when the ability to use multiple symbol tables is
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realized, it will be possible to record inter-file dependencies on the

procedural level; this would make it possible, for instance, to avoid

reccmpiling a file which references an unchanged interface even though the

interface resides in a file where other interfaces were modified.

Pcg only deals with Pascal. The SAGA environment is meant to support

several progranming languages [Campbell and Kirslis] ; SAGA editors exist for

Pascal, C, Ada, and Backus' FP. Since pcc-code is also used to implement

FORTRAN and C, the development of pcg-type compilers for these languages would

be straightforward. As we have seen, the use of standard compilers which

expect text input is inappropriate for an environment such as SAGA. But the

hand-coded production of pcg-style code generators could be prohibitively

costly in human time, for an environment which supports many languages. The

addition of the attribute-grammar based semantic evaluator to SAGA will make

the production of symbol table components far less ad-hoc. Since the symbol

table component is a major part of a code generating system, producing such

systems will become much less costly. The attribute-grammar specification for

one language, which details the attributes needed to generate a given

intermediate code from that language, could serve as the basis for developing

specifications for other languages which will use that same intermediate

code. Also promising is research on the automatic generation of compilers

from attribute-grammar specifications of a language and an architecture

[Ganapathi and Fischer], [Paulson]. It may be that such a formal specification

can be used to generate an entire language-based environment, including

editor, compiler, and debugger.

Pcg incrementally recompiles on the procedural level. Just as in IPE, a

natural development would be the integration of a source-level debugger into

I
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the editor/recompiler system, giving the ability to immediately run the actual

machine code routines on sample input. This would enable rapid interleaving

of program creation with program testing, as is possible in an

interpreter-based environment. But by incrementally recompiling rather than

interpreting, the true machine-code implementation would be the object of

debugging, and the faster execution characteristic of non-interpreted code

would be available.
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__ A

PCG PASCAL, STANDARD PASCAL, AND BERKELEY PASCAL

A.I Compliance with ANSI/IEEE 770 X3.97-1983 Standard Pascal

The SAGA pcg system complies with the requirements of ANSI/IEEE 770

X3.97-1983 with the following exceptions:

6.1 .I. The case of letters making up identifiers and reserved words is

significant. This follows the Unix convention.

6.1.3. Identifiers cannot be longer than 127 characters in length.

6.1.4. The directive #include may occur outside procedure-declarations

and function-declarations.

6. I. 5. Integers occupy the range minint..maxint, where minint =

-2147483648, and maxint = 2147483647.

6.1.6. Labels may be longer than four digits in length; a warning is

issued if such a label is declared.

6.1.8. If a conlnent begins with one type of delimiter and ends with

another, a warning is issued. Nested comments are allcwed.

6.2.2.10. The required identifiers 'write' and 'writeln' have special
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significance within the granm_r, and should not be redeclared.

6.4.3. I. (The keyword packed has no effect. )

6.4.3.2. To be a string, an array of characters need not be packed, and
's

the lower limit of its subscript need not be I.

6.4.3.5. The predefined type 'text' is equivalent to 'file of char'

6.8.3.5. The case statement is currently not implemented.

6.8.3.9. The for statement is currently not implemented.

A.2 Differences between Pcg Pascal and Berkeley Pascal

This section constitutes an addendum to Appendix A of the Berkeley Pascal

User's Manual. See that manual for a full description of Berkeley Pascal.

A.I. Extensions to the language Pascal.

String Padding. Pcg Pascal pads constant strings with blanks as

necessary, just as Berkeley Pascal does.

Octal constants, octal and hexadecimal write. Pcg does not support these

Berkeley extensions.

Assert statement. The assert statement is not supported.

Enumerated type input-output. Pcg Pascal performs the

extension of enumerated type input-output just as does Berkeley Pascal.

Structure returning functions. Pcg Pascal allow functions to

records, sets, and arrays, just as Berkeley Pascal does.

A.I. Resolution o__fth___eundefined specifications.

File name - file variable associations. Pcg Pascal associates

nonstandard

return

Pascal
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file variables with named Unix files following the Berkeley conventions.

The files input and output. These are handled as in Berkeley Pascal.

Buffering. The buffering of 'output' is controlled by the b option, just

as with Berkeley.

The character set. Just as in Berkeley, upper and lower case are

distinct, and all keywords and required identifiers are expected to be all

lower case. Use of , &, I, and # as synonyms for not, and, or, and ', are

not supported.

Co_nents. Comments that start with one style of delimiter and end with

another cause a warning message, as in Berkeley.

Option control. Options may be set in the pcg command line, in the

standard Unix convention. Pcg Pascal does not support the control of options

via flags in comments. See Appendix B for the options available.

Listings. No listings are produced. When errors are detected, their

locations are indicted by setting a flag in the token causing the error; the

token is thereby highlighted in epos's screen mode.

A. 3. Restrictions and limitations.

Statements. Pcg Pascal does not currently support the following

statements: goto, case, and for.

Files. The restriction that files cannot contain files is now part of the

standard. As in Berkeley Pascal, files are also restricted from being m_3ers

of dynamically-allocated structures.

Arrays, sets, and strings. The Berkeley restriction applies:

arrays--including strings--and sets may have no more than 655355 elements;

array and string subscripts are limited to the range -32768..32767.

Line and symbol length. Symbols are limited to 127 characters in

I
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length.

Procedure and function nestinq and program size. The arbitrary

restriction of a maximum nesting depth of 20 is maintained in pcg. There is an

unknown maximum program size; it is comfortable large.

Overflow. As Berkeley notes, the Vax does overflow checking in hardware.

A. 4. Added types, operators, procedures r and functions

Additional predefined types. Alfa is predefined (and may be redeclared,

of course). Intset is predefined to be set of 0..127.

Additional predefined operators. '<' and '>' may be used on sets to test

for proper set inclusion, as in Berkeley Pascal.

Non-standard procedures. The following Berkeley non-standard procedures

are supported by pcg: argv, flush, halt, remove, and the extended two-argument

reset and rewrite. These are

stlimit, and time.

Non-standard functions.

are supported: argc, card, and expo.

seed, sysclock, and wallclock.

not supported: date, linelimit, message, null,

The following Berkeley non-standard functions

These are not supported: clock, randcm,
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Appendix B

MANUAL PAGE FOR P(3G

NAME

pcg - Pascal code generator

SYNOPSIS

pcg[ option ] filename...

DESCRIPTION

Pcg functions as a Pascal compiler in the SAGA Pascal

environment. If given an argument SAGA file ending with .p,

it will ccmpile the file and load it into an executable file,

called, by default, a.out.

Pcg currently does not support the following Pascal

statements: case, goto, for.

Pcg compiles directly from the parse tree representation

of the source file used by epos. Pcg expects the SAGA file

(directory) to include a symbol table, generated by the

epos-resident symbol table component of pcg; but in the

absence of a symbol table, pcg will generate one. If the file

was compiled previously with pcg, then a subsequent

recompilation will reuse unchanged procedures from the

previous compilation, for efficiency' s sake.

Currently, pcg does not support separate cempilation.

When such support becomes available, it will be modeled on

the example of Berkeley pc; see pc( I ).

Pcg does not support profiling with pxp(1).

The following options have the same meaning as in pc (I),

cc(1), and f77(I). See id(1) for link-edit time options.

-c Suppress link-editing and produce '.o' file(s)

from source file(s).
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-g Generate additional symbol table information for
sdb (which is obsolete).

-w Suppress warning messages.

-p Prepare object files for profiling; see prof(1).

-0 Invoke an object-code optimizer.

-S Generate assembler code only; do not generate
'.o' files.

-o name
Namethe final output file 'name' instead of 'a.out'.

The following options are the sameas in pc(1).

-C Compile code to perform runtime checks, and initialize
all variables to 0.

-b Block buffer the file output.

The following options are peculiar to pcg.

-F Force the generation of new intermediate code,
ignoring code maintained from previous compilations.

-d Generate debugging output.

FILES
file.p
-saga/bin/epospcg
~saga/bin/pcg
~saga/bin/pcgcodegen

/lib/fl

/usr/lib/pc2

/usr/lib/pc3

/lib/c2

/usr/lib/libpc.a

/usr/lib/libm.a

/lib/libc.a

~saga/src/pcg/semantic

-saga/src/pcg/codegen

-saga/src/pcg/increm

Pascal source files

editor with resident symbol table component

incremental recompilation driver

portable C compiler intermediate

code generator

assembler generator

inline expander

separate ccmpilation consistency

checker

peephole optimizer
intrinsic functions and I/O library

math library

standard library, see intro(3)

semantic phase sources

code generator sources

incremental recompilation driver sources

SEE ALSO

"Pcg: A Prototype Incremental Ccmpilation Facility for the
SAGA Environment".

Berkeley Pascal User's Manual.
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John Kimball

Pcg is a prototype system, and bug reports should be sent
to the author.
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for the SAGA Editor
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1. Introduction

The SAGA editor provides a mechanism by which separate processes can be invoked during an edit-

ing session to traverse portions of the parse tree being edited. These processes, termed filter processes,

read, analyze and possibly transform the parse tree, returning the result to the editor. By defining new

commands with the editor's user-defined command facility, which invoke filter processes, authors of filters

can provide complex operations as simple commands. A tree plotter, pretty printer, and Pascal tree

transformation program have already been written using this facility. This document introduces filter

processes, describes parse tree structure and the library interface available to the programmer, and

discusses how to compile and run filter processes. Examples are also presented to illustrate aspects of each

of these areas.

2. The SAGA Editor

The SAGA editor is a language-orlented editor based upon a table-drlven LALR(1) parser. As the

user inputs his program, the editor analyzes the input and interactively builds a parse tree internally.

Modifications are incrementally reparsed. Since the data is stored in parsed form, it is a simple matter to

make the parse tree available for additional analysis by other programs. These programs, using pre-



definedlibraryroutines,can walk the parse tree collecting data. They can modify some fields in the tree

directly, and can transform the structure of the tree by writing a text file which is passed back to the edi-

tor to be parsed and inserted in place of some portion of the existing tree. The editor provides both user-

defined command sequences and command files to facilitate the use of these programs. See the SAGA edi-

tor user manual for more information about the editor itself.

8. The Parse Tree

The parse tree which is built by the editor consists of three types of parse tree nodes, and a header

record. The node types consist of terminal, non-terminal and marker. The header record contains the

root node of the tree, how many syntax or semantic errors are present, and other information. Each of

these tree components is described in more detail in the following sections.

8.1. Parse Tree Structure

The root node of the tree is a non-terminal, and corresponds to the start symbol in the grammar

defining the language in use. Each non-termlnal node in the tree represents a non-terminal token on the

left hand side of a production rule in the grammar. The children of each non-terminal node correspond

exactly to the terminal and non-terminal tokens on the right hand side of this production rule. Each

parent node points to its leftmost child; each child points to its right sibling (the rightmost child has no

sibling); and each child points to its parent.

Each node also contains a rightmost descendant (or rdescend pointer). For terminal nodes, this des-

cendant is the node itself. For non-terminal nodes, this node is the rightmost terminal node in this non-

terminal's tree.

Terminal nodes are also linked together in a doubly-linked list, with each terminal node pointing to

both the terminal node just preceding it and following it.

Each node also contains a left thread (or lthread) field, which points to the node which was on the top

of the parse stack just before this node was shifted onto the stack. This field is used by the editor to

reconstruct intermediate stages in the parse when a modification is being made to this portion of the tree.
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3.2. Fields Common to all Nodes

In addition to the above mentioned link fields, each node also contains the parse state of the parser

after this node was shifted onto the parse stack, a set of Boolean flags, some formatting information for

printing, and integers which order the node relative to others around it.

Although the parse tables are not directly available, the editor module which provides access to them

can be retrieved and added to the filter process. Queries concerning the parse states of nodes can then be

made, for example, in a parse tree consistency checking program.

The following flags are available in each node:

FPOINT
FDELETE

FMODIFIED

FMAKE

FNOTPARSED

FSHIFTREDUCE

FSELECT

FSEMDELETE

FLEX:ERR

FSYNERR

FSEMERR

FELIDE

FSUBELIDE

An editor pointer is set at this node,

this node has been deleted from the parse tree,

this node is new to the parse tree since

the last parse tree difference was taken,

reserved for use by the SAGA make facility,
this node has not been parsed,

this node contains no parse state, since

a shift-reduce action was performed by the parser,

used to highlight portions of the parse tree,

this node has been deleted from semantic tables,
this node contains a lexical error,

this node contains a syntax error,

this node contains a semantic error,

this node is being elided (not printed),
this node is nested in an elision.

The FPOINT and FSELECT flags are only set during an editing session. FDELETE, FNOTPARSED,

FSHIFTREDUCE, FLEX:ERR, and FSYNERR are manipulated by the parser. FMODIFIED is used by

the tree-differencing facility. FMAKE is used by the SAGA make facility [Badger, 84]. FSEMDELETE

and FSEMERR are manipulated by the semantic analysis routines. FELIDE and FSUBELIDE are

intended to guide the printing (and hiding of detail) of te parse tree; they are not fully implemented yet.

Terminal nodes and non-terminal comment tree nodes contain skipline and skipcol fields to guide the

printing of the node. The skipline field stores the number of newline characters to be output before the

ascii string representing the token is printed, while the skipcol field stores the number of space characters

to be output. The actual character string to be printed for the node can be retrieved with a call to one of

the library routines to be presented later.



3.3. Terminal Nodes

Terminalnodescontainthetokencodeof the terminal, a pointer to the print name of the terminal,

and the length of the print name (not including preceding newlines and spaces). All relevant information

described earlier is also present.

8.4. Non-termlnal Nodes

Non-terminal nodes contain the token code of the non-terminal, the number of the production rule

in the grammar for which this node represents the non-terminal on the left hand side of the productionp

and the leftmost child {first token on the right hand side of the production) of this node. All relevant

information described earlier is also present.

8.5. Marker Nodes

Ifat any time during a parse,the parserencounters an erroror an incomplete surrounding tree inits

environment, the parser willsuspcnd the parse. When itdoes so, itleavesa discontinuityin the tree. In

order to be ableto resume the parse at a latertime, a marker node isinsertedinto the treeat the point of

the error. This node storesa pointerto the node currentlyon the top of the parse stack,a pointerto the

node which caused the error (ifany), and a pointerto the "next" marker token in the parse tree. By next

ismeant the marker for the most recentlyoccurring previous error. The firstold terminal node following

the new input (and any of itsancestorswhose leftthread pointer are identical)alsohave theirleftthread

pointersresettopoint to thismarker node, so that laterreparsesthat happen to reach thisarea of the tree

willdetectthisdiscontinuity.

In general,itisnot recommended that filterprocessestraverseparse treescontaining discontinuities,

since the tree structurewillbe incomplete. The fact that a parse tree has syntax errors (and semantic

errors) can be detected by querying the status, synerror (and semerror) fields in the parse tree header

record.
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4. Filter Process Structure

Now that the reader has some idea about the structure of the parse tree, we will describe the struc-

ture of a filter process {program), and how it accesses the filter library of node access routines. The library

itself will be described in the next section.

Two steps are necessary to use the filter library in a Pascal program. First, the filter library header

file must be included. The Pascal program does this via the following include statement:

program myfllter (output) ;

#1nclude " ../../../src/fllterllb/hdr/f llberllb, h"

end. (* myfllter *)

The path given above assumes that the filter program resides in the filter process directory within the

SAGA source code directory hierarchy. You will want to adjust it if the program source resides elsewhere.

This include file in turn references several include files used by the SAGA editor. These files define

the interfaces used by the routines which access the parse tree nodes, many of which are used by the SAGA

editor itself.

The include file which declares the routines which access the parse tree is

src/editor/hdr/nodeaeeess.h. The routines in this file are the ones described in the next section of this

document. "

The second step needed to use the filter library occurs at compilation time. The compiled object

(relocatable binary) is linked and loaded together with the filter library as follows:

pc -c myfllter.p

pc -o myfllter myfllter.o . ./../../src/fllterlib/fllterllb.

(The filter library may instead be stored in saga/lib/filterHb.) The compiled program may be used either

in conjunction with an editing session, or stand alone on a parse tree file produced earlier by an editor.

This latter ability can be helpful when debugging filter programs. When used with the editor, the filter

process is invoked with some standard command line arguments, including the name of the directory con-

taining the parse tree and related files. These conventions will be described in detail in a later section.

6



6. The Filter Library

Thefilter library consistsof a numberof functionsandprocedureswhichread(andsomewhich

modify)certainfieldswithinnodesof theparsetree. Theseroutinesaredividedinto severalcategories,

andpresentedin thefollowingorder: openingandclosingtheparsetreefile,retrievinginformationfrom

the headerrecord,accessingpointerswhichconnectnodes,accessingfieldscommonto all nodetypes,

accessingfieldsspecificto eachnodetype,andmodifyingselectedparsenodefields.

5.1. Opening and Closing the Parse Tree Files

The following functions are provided to establish a connection to an existing parse tree file:

function Ninitialize

(var pathname: charbuf;

vat parsefile: filerange;

var stringfile: filerange

): integer;
external;

(* open a parse-tree directory *)

(* name of directory *)

(* return: file tag of parse tree *)
(* return: file tag of string table *)

(* return 0 if o.k., -1 for error *)

The pathname parameter is the name of the directory containing the parse tree files. It is supplied to the

filter process as the first argument on the command llne; using the argo and argv Pascal system routines,

this string can be retrieved and passed to Ninitialize. The second and third parameters are returned by

Ninitialize, and are passed to other filter library routines.

Function Nopea is provided for completeness, should the filter process wish to define its own paged

data structure, or open and reference a second parse tree file in addition to the first one opened above. If a

second tree is to be accessed, both the parse tree file and string table file need to be explicitly opened. If

only one tree is to be accessed, and no other files referenced, then this call need not be used.

function Nopen

(var pathname: charbuf;

var recsize: integer;
var rccpcrpage: intcgcr

): integer;
external;

(* open an existing paged" file *)

(* name of paged file *)

(* return: record size in bytes *)

(* retur,,: reco_ds/p_ge (for Nusebuffe_0) *)
(* return filetag if o.k., -1 if error *)

Note that the pathname parameter to Nopen refers to the actual file to be opened, not just the directory

which contains the file. The remaining parameters are returned, and are to be passed to Nusebuffer to
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assign to the file a buffer in which to place the file's data.

Nuzebuffer assigns a buffer to the file to be paged into memory. The bufaddr parameter should be

declared as a pointer to an array from 1 to n of records, where the record type is the record being paged.

This pointer needs to be passed to the routine as ord(<polnter>) (so that Nusebuffer can be used for

many record types). The receount parameter specifies the number of records in the array, which must be

an exact multiple of the page size returned by the Nopen call. If only Ninitialize called, Nusebuffer need

not be called either, since the code in Ninitialize declares a buffer to contain the paged data, and also

makes a call to Nusebuffer itself.

function Nusebuffer

(filetag: integer;
bufaddr: integer;

reeeount: integer

}: integer;

external;

(4 assign data buffer to paged file *)

(4 assign buffer to this file *)

(4 memory address of buffer (ord(b}} *}

(4 record ,ize of buffer4)
(4 return 0 if o.k., -i for error 4)

The Nelose routine should be called when the filter process is finished. If the parse tree file was only

read, this call is not strictly necessary. However, if any fields were modified by the filter process, this rou-

tine must be called in order to write out the remaining data in memory and close the file, otherwise infor-

marion may be lost.

function Nclose

{It: filerange

): integer;

external;

{* close an open paged file *)

(* file tag *)

(* return 0 if o.k., -1 if error *)

5.2. Retrieving Information from the lteader Record

These routines are provided to retrieve information from the header record: The most useful of these

arc Nroot, which returns the root node of the parse tree, and Nstatus, which returns the parse tree status,

either COMPLETE or SUSPEND. COMPLETE will be returned only if the tree contains neither syntactic

nor semantic errors. The

function Ndelete (* get no. of explicitly deleted nodes *)
(ft: filerange): nodeindex; external;



functionNmodified (* get parse tree modifed tiag *)

(ft: filerange): boolean; external;

function Nreadonly (* get parse tree readonly flag *)

(ft: filerange): boolean; external;

function Nroot (* get parse tree root node *)

(ft: filerange): nodeindex; external;

function Nsemerror (* get parse tree semantic error count *)

(ft: filerange): integer; external;

function Nstatus (* get parse tree status *)

(ft: filerange): statuskind; external;

function Nsynerror (* get parse tree syntax error count *)

(ft: filerange): integer; external;

function Ntreesynlist (* get parse tree .treesynlist pointer *)

(ft: filerange): nodeindex; external;

5.8. Aeeesslng Pointers which Gonneet Nodes

The parse tree nodes can be thought of as being stored as an array of nodes from 1 to n. Each node

4

has an integer assigned to it which is used to reference it. This index is stored in and used by other nodes

as well. These routines are presented below_ with associated comments.

function Nf (* get next node on frontier of tree *)

(ft: filerange; n: nodelndex): nodelndex; external;

function Nleftson (* get leftmost child of non-term node *)

(ft: filerange; n: nodeindex): nodeindex; external;

function Nlthread (* get node beneath this one on "stack" *)

(ft: filerange; n: nodeindex): nodeindex; external;
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function Np (* get previous node on frontier of tree *)
(ft: filerange; n: nodeindex): nodeindex; external;

function Nparent (* get parent node *)

(ft: filerange; n: nodeindex): nodeindex; external;

function Nrdescend (* get rightmost terminal in this tree *)

(ft: filerange; n: nodeindex): nodeindex; external;

function Nsibling (* get right sibling *)

(ft: filerange; n: nodeindex): nodeindex; external;

5.4. Accessing Fields Common to All Nodes

The following routines retrieve other information stored in each parse tree node.

described in more detail in the parse tree description section earlier in this paper.

function Ndepth (* get depth of node into tree *)
(ft: filerange; n: nodeindex): integer; external;

function Nenum (* get ordering stamp of node *)

(ft: filerange; n: nodeindex): integer; external;

function Nflagtest (* test flag setting *)

(ft: filerange; n: node.index; thisflag: short): boolean; external;

function Nnodetype (* get type of parse tree node *)

(ft: filerange; n: nodeindex): treenodetype; external;

function Npstate {* get state of parser stored in this node *)
(ft: filerange; n: nodeindex): staterange; external;

function Nskipcol (* get skip column count for printing *),
(ft: filerange; n: nodeindex): integer; external;

These felds are



function Nskipline (* get skip line count for printing *)

(ft: filerange; n: nodeindex): integer; external;

6._. Accessing Fields Specific to a Node Type

5.5.1. Fields Present in Termlnal Nodes Only

Procedure Nname retrieves the print name of a terminal node. Both the parse tree file and string

table file tags must be supplied to the routine. Calls to Nskipline and Nskipeol should also be made to

retrieve the number of newlines and spaces to print_ before the token name, if these are needed.

procedure Nname

(ftp, fts: filerange;
n: nodeindex;

vat bur: charbuf;

vat length: ebufindex

); external;

(* get print name of token from string table *)

(* parse tree and string table file tags *)

(* node of interest *)

(* return: print name of token *)

(* return: length of print name *)

function Ntoken (* get the token code of the terminal node *)

(ft: filerange; n: nodeindex): tokenrange; external;

function Nvallength (* get the length of the print name *)

(ft: filerange; n: nodeindex): integer; external;

5.5.2. Fields Present in Non-termlnal Nodes Only

The following routines are only meaningful when applied to non-terminal nodes. Note that a third

routine Nleftson, mentioned earlier, is also only applicable to non-termlnal nodes.

function Nntoken (* get token code of non-terminal node *}

(ft: filerange; n: nodeindex): tokenrange; external;
. o

function Nrule (* get rule # of non-term node *)

(ft: filerange; n: nodeindex): rulerange; external;
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5.5.3. Fields Present in Marker Nodes Only

If the parser encounters an incorrect token during the parse, the parse will be suspended, a marker

token inserted in the tree at this point, and the badtoken feld of the marker set to point to this incorrect

token. If, however, the parse is simply suspended (via a partial parse command in the editor for example),

a marker will be inserted into the frontier of the parse tree at the point of the suspension, but no node will

be assigned to the bad_oken field.

function Nbadtoken (* get offending node of marker node *)

(ft: filerange; n: nodeindex): nodeindex; external;

Marker tokens are linked together in a llst. The header record of the parse tree contains a pointer to

the first marker token, and then each marker token contains a pointer to the next one. The Nmarksynlist

routine is used to retrieve this pointer from a marker node.

• function Nmarksynlist (* get next error pointer in marker node *)

(ft: filerange; n: nodeindex): nodeindex; external;

When a parse is suspended, the node on the top of the parse stack must be noted for later resump-

tion of the parse. This node is stored in the oldstacktop field of the marker node, and can be retrieved by

the Noldstaektop routine.

function Noldstacktop (* get stack top stored in marker node *)

(ft: filerange; n: nodeindex): nodeindex; external;

5.6. Modifying Selected Parse Node Fields

Presently, only the parse tree flags and format fields for printing of the nodes can be rewritten. Only

those flags not maintained by the parser should be changed, or havoc will result. See the discussion of

parse tree flags presented earlier in this paper for specific flag names.

The skipllne and _klpeol fields of the parse tree are used by the display manager to format the tree

for printing. These may be reset to any appropriate non-negative value. A filter process to pretty print

the parse tree would use these fields to reformat the tree. Note that both non-termlnal and terminal nodes

have these format fields, but only the nodes along the frontier of the tree have their formats read by the

11



display manager. Thus the format fields in internal nodes can be used to store formats as inherited attri-

butes of the parse tree nodes. Coding a program in this manner could simplify the bookkeeping which

would otherwise be necessary.

procedure Newflagclear (* clear flag *)

{ft: filerange; n: nodeindex; thisflag: short); external;

procedure Newflagset (* set flag *)

(ft: filerange; n: nodeindex; thisflag: short); external;

procedure Newskipllne (* set newllne count to print before name *)

(ft: filerange; n: nodeindex; value: integer); external;

procedure Newskipcol (* set space count to print before name *)

(ft: filerange; n: nodeindex; value: integer); external;

5.7. Accessing Other Specialized Data: An Array of Shorts

This next section presents one other type of record array which is predefined along with the parse

tree node: an array from 1 to n of short integers (two bytes of storage per number). The following routine

retrieves these shorts.

function Nptshort (* get ptshort field *)

(ft: filerange; st: integer): short; external;

6. Executing a Filter Process: Command Line Arguments

The SAGA editor contains a filter command which takes the name of the filter process as an argu-

ment, and arranges to execute the program as a sub-process to the editor. This command automatically

supplies the name of the parse tree directory as the first argument to the program, and optionally supplies

a parse tree node number as a second argument if a sub-tree is selected by the user to be passed to the

filter command. Any other arguments given to the filter command are passed along to the filter process

after these initial arguments. Thus the filter process is executed with the following arguments:
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< filtername > < parse-tree-directory > [ < tree-node > i [< args to filter cmd > ]

When the filter process begins execution, it should first pass its first argument to Ninitialize to open

the parse tree and string table files. If the optional second argument is present, it should be used as the

starting node in the tree to be processed. If it is absent, a call to Nroot will return the root node of the

parse tree, which should be used instead.

Unless the process is prepared to deal with discontinuities in the parse tree, it is a good idea to call

Nstatus, Nsynerror and/or Nsemerror to determine whether any exist. If this is the case, the process may

wish to simply produce an error message and exit.

If a sub-tree has been specified to the filter process and discontinuities exist in the parse tree, it is

possible to determine whether any exist within the subtree of interest. One approach is to traverse the

frontier of the subtree, checking for the presence of a marker node or a node with the FNOTPARSED flag

set. Alternatively, the Ntreesynlist and Nrnarksynli_t routines can be called to retrieve the first and succes-

sive marker tokens in the tree, respectively. The Nenum routine could check the enumeration field of each

of these marker nodes or the Nbadtoken node associated with the marker to see whether it is in between

the enumeration fields of the first and last terminal nodes in the sub-tree of interest. If none are found,

the processing can go ahead.

7. Traversing the Parse Tree

Once the files are opened and the tree status determined, the Nleflson and Nsibling routines can be

used to perform a pre-order, in-order, or post-order walk of the parse tree. Alternatively, starting at the

first terminal node in the tree, the Nsibling and Nparent routines can be used to walk the tree in the same

order as the canonical parse which constructed it. Starting at the first terminal node, the Nfroutlne could

also be used to walk the frontier of the tree.

At each node in the tree, the appropriate library routine can be used to retrieve the fields of interest

in the node.

13



Should it be desired to make modifications to the tree, two approaches may be used. Fields such as

the skipline and skipcol fields can be queried and reset directly using the Newskipllne and Newskipeol rou-

tines. To transform the tree, a text file should be created into which the new text to be inserted into the

tree is placed. If the filter command in the editor is placed into a user-defined command sequence, then

additional commands in this sequence can cause the deletion of the sub-tree which was passed to the filter

followed by the insertion of the new text from this file.

For more complex modifications, the filter process can created a command file which contains a com-

bination of editor commands and input data. The user-defined command sequence which executes the

filter command can then invoke the editor's ezee command on the file produced by the filter process; com-

mands in this file will then guide the modifications to be made.

Note that if the filter process plans to modify the parse tree in any way, the filter command in the

editor should be given as filter -w .... The -w option tells the editor to close the parse files and re-open

and re-read their contents once the filter process has completed. Normally, all data in memory is written

to disk before the filter process is invoked, but a copy is kept in memory for efficiency, and is reused when

the editor continues execution.

8. Summary

This document has described the implementation of filter processes. Constructive comments, ques-

tions, and feedback concerning unclear or incomplete sections should be be directed to the author.
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DFBASE ( 1 ) UNIX Programmer's Manual DFBASE ( 1 )

NAME

dfbase--setthe base versionforfindingdifferencesbetween SAGA parse trees

SYNOPSIS

dflaase (saga dlrectory_

DESCRIPTION

Dfbase setsthe base versionfor dfdifftouse. The saga directorycontainsthe filescreatedby epos.

The modified fieldsin the current filesare clearedand the parse treeiscopied to the base version.

The parse treemay not become the baseversionifitcontains errorsor parse suspensionpoints.

DIAGNOSTICS

Error messages are (hopefully)self-explanatory.

FILES

In the saga directoryfor which dfbaseisinvoked:

slon dfbasestr stringfilefor base version

sagalp parse tree for the version being edited
for the version being edited

SEE ALSO

dfdiff, dfundo

IDENTIFICATION

Carol Beckman

BUGS

Dfbase will change in the near future with little notice.

dfbaseparse parse tree for base ver-

dfdebug debugging output

sagals stringfile

SAGA 5/15/85
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NAME
dfdiff--display differences between SAGA parse trees

SYNOPSIS

dfdiff <saga directory> [<root or range>] [<context>] [<version>]

DESCRIPTION

Find the differences between the current version of the parse tree and an older, base, version.

The <root or range> argument tells which differences to print. If the argument is an integer, it

is taken as the root (nodeindex) of a subtree. If the argument is two integers separated by a colon,
it is taken as the beginning and ending locations (nodeindices) of the range in which to find

differences. Only differences in the selected part of the parse tree are printed. If no argument is

given, all the differences in the tree are printed.

The <context> argument tells how many lines of context to print around each difference. <con-

text> is an integer. A partial line adjacent to a difference counts as one llne. If no argument is

given, one is used.

The <version> argument is used to select the version of the difference command. <version> is

an integer. Currently only one version is available. This version is used if no <version> argu-

ment is given.

Dfdiff operates in screen mode or line mode. In line mode the differences will all print with no

further input from the user.

In screen mode, the differences are displayed one at a time. If a difference cannot fit on one screen,

the old and new parts of the difference each get half the space. The text can be scrolled so that all
the difference can be viewed. Control-L scrolls the parts forward, while control-H scrolls back.

The old and new parts can be scrolled individually by prefixing the command with control-O or
control-N for the old and new parts, respectively. So control-O control-L scrolls just the old part

forward. Control-N control-H scrolls just the new part back. Moving from one difference to the

next is accomplished with control-J and control-K. Control-J moves to the next difference.
Control-K moves back one difference. The default action is to move to the next difference. So if

any other key is hit, the next difference is displayed.

DIAGNOSTICS

Error messages are (hopefully) self-explanatory.

FILES

In the saga directory for which dfdiff is invoked:

sion dfbasestr string file for base version
the differences found dfdebug

for the version being edited sagals

SEE ALSO

dfbase, dfundo

IDENTIFICATION
Carol Beckman

BUGS

dfbaseparse parse tree for base ver-
dfdiffinfo information for

debugging output sagalp parse tree

string file for the version being edited

When called as a filter command from the SAGA editor, the first screen display is not always

correct. This affects further screen displays since only the new text is plotted and the replotter

assumes the first screen was properly displayed. This might be fixed now.

The field in the parse tree which is supposed to indicate whether a change has been made since the

last time dfdiff was executed does not get set by all changes. Thus dfdiff may not display the new

changes since it will reuse the old information, on the false assumption that it is current.

SAGA 7/28/85 1
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Ifdfundo isused to undo differences,but these differencesare not actuallyundone, dfdiffwillnot

displaythe undone differencesunlessthe parse treeismodified.

SAGA 7/28/85 2
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NAME

dfundo--generate commands for undoing differences between SAGA parse trees

SYNOPSIS

dfundo < saga directory > < diff# > ... < diff# >

DESCRIPTION

Dfundo generates the commands needed to undo a difference. Dfdiff must have been executed after

any changes to the parse tree and before dfundo is invoked. The <diff#>s are the numbers given
by dfdiff of the differences which are to be undone. One or more <diff# >s may be given for one
invocation of dfundo.

DIAGNOSTICS

FILES

Error messages are (hopefully) self-explanatory.

In the saga directory for which dfundo is invoked: dfbaseparse parse tree for base

version dfbasestr string file for base version dfdiffinfo information

for the differences found dfdebug debugging output sagalp parse

tree for the version being edited sagals string file for the version being edited

#dfundoexec file of commands to execute to undo differences

SEE ALSO

dfdiff, dfbase

IDENTIFICATION
Carol Beckman

BUGS

The commands generated by dfundo cannot be executed by epos with an exec command. It seems

that epos interprets the text for insertions as commands. The range syntax needed for the dele-

tions is not implemented.

Dfundo will report that a difference has been undone already even if the file of commands has not
be executed unless some change is made to the parse tree and dfdiff is executed again.
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NAME

epos -- language-oriented editor based on an LR(1) parser.

SYNOPSIS

epos [-1] [-P < parse-tables >] [-cdiimprstvx] < parse-tree > [< parse-tree >]

DESCRIPTION

Epos is an editor for languages based on formal BNF style grammars and LR(1) parsers. An edi-

tor can be produced for any language for which such a description exists. The editor provides
both text-oriented commands and additional structure-oriented commands, which are based on

the structure of the parse tree produced by the editor.

The editor incorporates an LR(1) style parser to perform syntactic and optional semantic analysis
of the program being edited. Each time the user completes an insertion or modification, the parse

tree is incrementally updated with the new information. The user of the editor is provided with

additional analysis during the editing process, and presented with immediate feedback about the

correctness of the input.

The amount of semantic analysisperformed (and whether any at alloccurs)isdependent both on

the parser-generatingsystem used toproduce the editor,and the type ofsemantic analysisdefined

in the input grammar file.

The editorisscreen-orlented,using the termcap facilityto adapt itselffor a particularterminal;a

linemode isalsoprovided. The SAGA editoruser manual provides a descriptionof editorcom-

mands. Information about the run-time environment of the editor,and itscommand lineoptions

and arguments ispresentedhere.

The command lineoptionsare:

-I Invoke the editorinlinemode insteadof screenmode.

-P Specifiesan alternatefile(-P<parse-tables>) from which to load the parse tables to be
used.

Since the editor is still an experimental prototype, a number of the available debugging options

are listed below to aid the individuals managing the implementation. These options can be

activated either by command llne flags or the on and offcommands of the editor. Users might find

them useful in formulating bug reports. The command line options for debugging are:

-b Turn on paging system debugging. Same as the "on db" editor command. If specified twice,

also enables detailed debugging.

-c Turn on command interpreter debugging. Same as "on dc'.

-i Turn on input and editor initialization debugging. Same as "on di'. If specified twice, also

enables detailed debugging.

-m Turn on make (incremantal recompilation) system debugging. Same as "on dm'.

-p Turn on parser debugging. Same as "on dp'.

-r Turn on parser initialization and recovery debugging. Same as "on dr".

-s Turn on debugging of the semantic analysis phase of the parse. Same as "on ds'.

-t Turn on debugging of the parse tables (used in the editor's language dependent module

only). Same as "on dt'.

-x Turn on debugging of the lexical analysis phase of the parse. Same as "on dr'.

FILES

SAGA

saga/bin/epos:

cshell script to invoke the editor,

saga/obj/editor/< language > .mystro/epos:

24 July 1985
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the actual editor process,

saga/obj/editor/< language > .mystro/parse.tables:
the binary parse tables,

saga/obj/editor/( language > .mystro/help.index:
index to on-line help file,

aaga/obj/editor/< language :> .mystro/epos.help:
on-line help file,

sagalsrcleditor llib lepos.cmds:
user-defined commands for all editors,

saga/src/editor/lib/epos. < language > cmds:
user-defined commands for this language,

(current-directory _/.epos. (language _ cmds:
the user's private user-defined commands for this language.

SEE ALSO

scat(l), dfbase(1), dfdiff(1), dfundo(1), rulecount(1).

AUTHOR

Peter A. Kirslis, Dept. Computer Science, Univ. Illinois -- Urbana, 1304 W. Springfield Ave.,

Urbana, Illinois, 61801. Written 1982, revised and extended 1983, 1984, 1985.

BUGS

The editor is still an experimental prototype. Some bugs still exist in the parser, although most

problems will be found in the screen-mode command interpreter. If a parse tree file is garbled by

the editor, its text representation can usually be recovered with the scat(1) command.

The second parse tree argument to the editor specifies an alternate parse tree to be accessed read-

only. Use of the alternate file is restricted to line mode, since the screen mode interpreter does not

yet provide any support for accessing it.

Multi-line comments are not yet supported in the editor. The lexical analyzer does recognize them

and store them properly, but the command interpreters and screen display do not yet handle them

properly.

SAGA 24 July 1985
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MAKE ( 1 ) UNIX Programmer's Manual MAKE ( 1 )

NAME

Make - maintain program groups

SYNOPSIS

Make [ -f makefile ] [ option ] ... file ...

DESCRIPTION

Make executes commands in make file to update one or more target names. Name is typically a

program. If no -f option is present, 'makefile' and 'Makefile' are tried in order. If make file is '-',

the standard input is taken. More than one -f option may appear

Make updates a target if it depends on prerequisite files that have been modified since the target

was last modified, or if the target does not exist.

Make file contains a sequence of entries that specify dependencies. The first line of an entry is a

blank-separated list of targets, then a colon, then a list of prerequisite files. Text following a

semicolon, and all following lines that begin with a tab, are shell commands to be executed to

update the target. If a name appears on the left of more than one -" then it depends on all of the

names on the right of the colon on those lines, but only one command sequence may be specified

for it. If a name appears on the left of a colon exclamation mark t! then it depends on exactly one

of the files on the right of the colon exclamation mark. The file choosen is the first one (left to

right) that exists, or the last one if none of them exists. If a name appears on the left of a colon

question mark .'? then it depends on all the files on the right of the colon question mark if they

exist. If a name appears on the left of a colon exclamation question mark t!? then it depends on

no more than one of the files on the right, if no file on the right exists, then it behaves like a t? . If

a name appears on a line with a double colon :: then the command sequence following that line is

performed only if the name is out of date with respect to the names to the right of the double

colon, and is not affected by other double colon lines on which that name may appear.

Three special forms of a name are recognized. A name like a(b) means the file named b stored in

the archive named a. A name like a((b)) means the file stored in archive a containing the entry

point b. Also a name like a,,J(b) refers to the RCS file of a with revision b. The revision may con-
tain symbolic names as defined in RCS. If the revision refers to a branch then the last member of

that branch is the revision chosen. Note: Using the modified ci command with -l or -u options the

modification dates of a revision and the working file are equal, i.e., neither one is considered to be
out of date with the other.

Sharp and newline surround comments.

The following makefile says that 'pgm' depends on two files 'a.o' and 'b.o', and that they in turn

depend on '.c' files and a common file 'incl'.

pgm: a.o b.o

cc a.o b.o -lm -o pgm
a.o: incl a.c

ec --c a,e

b.o: incl b.c

cc -c b.c

Make file entries of the form

stringl = string2

are macro definitions. Subsequent appearances of $(,tringI) or ${strin91} are replaced by 8trineg.

If string1 is a single character, the parentheses or braces are optional.

The value of a macro may be edited before being replaced in the input stream. The syntax is

${stringl:modifier} where modifier specifies the edit to be made. If an edit fails a default value is
returned and a warning is sent to stderr. The modifiers are:

4th Berkeley Distrlbutlon 30 January 1985 1
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-a Which returns the archive file. Thus dirl/archive(member) becomes dirl/archive. If no (

exists then the argument is returned.

-e Which returns the extension if one exists or .junk otherwise. Thus ../dirl/root.el.e2

becomes .e2.

-h Which returns the head of the path name if a / exists in the argument, otherwise it

returns a '.' (current directory). Special case, if the path is the root name / then that is

returned. Thus dirl/dir2/name becomes dirl/dir2.

-m Which returns the member of an archive if a ( exists, otherwise it returns its argument.

-R -R/.E/ The first case returns the "local" root of the path name, i.e., all the directories
and the extension are discarded. The second case appends the new extension to the former

result. Thus dirl/dir2/name.e becomes name.

-r -r/.E/This version retains the directories. In the example dirl/dir2/name is returned.

-t Which returns the tail of the path name if a / exists or its argument otherwise.

-s Which implements the Unix ed command s/pattern/replace/. If the pattern match fails

the argument is returned.

All of the modifiers work on lists of names by processing each name individually, i.e., the strings

are broken into lists of names based on space delimiters and each name is modified separately.

For each rule four special variables are set, $(&, $*, $<, and $?. The special macro $@ stands for

the full target name, $* stands for the target name with the suffix deleted. Both of these variables

may be used in the prerequisites list and the commands in conjunction with the editing operations

explained above. The macro $ <: lists the prerequisites that exist on the line with the commands,

and $? lists all the prerequisites that are out of date. The special variables can be used with the

modifiers discussed above.

Shell meta characters can occur in both target and prerequisite file names. When used in target

file names the pattern is used to find the rules associated with an actual target name. When a
match occurs the $(_ and $* variables are set to the actual target name, and the prerequisites are

processed. If a prerequisite contains a meta character the corresponding directory is searched and

any file which matches becomes an actual prerequisite. The standard glob(1) patterns have been
extended with the ** pattern which is like * but capable of matching a sequence of directories

when used in the target name.

Make can infer prerequisites for files for which the Makefile gives no explicit commands. For

example_ a '.c' file may be inferred as prerequisite for a '.o' file and be compiled to produce the '.o'
file. Thus the preceding example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -lm -o pgm

a.o b.o: incl

Prerequisites are inferred from a list of optional rules. Optional rules are distinguished by a :?

between the targets and dependent files. The optional rules only apply if the dependent file(s)

exists, and only one optional rule applies for a particular target. Thus order is significant; the
commands associated the first target pattern that matches target name and for which there exists

a dependent file are the commands used. For example, the rule for making optimized '.o' files

from '.c' files is

• .o :? $*.c

cc -c -O -o $@ $*.c

Notice the use of a shell meta character in the target file name, and the special macro $* to specify

the exact prerequisite desired.

4th Berkeley Diqtribntion 30 January 1985
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Certain macros are used by the default inference rules to communicate optional arguments to any

resulting compilations. In particular, 'CFLAGS' is used for cc{1) options, 'FFLAGS' for J'77(1)
options, 'PFLAGS' for pc(l) options, and 'LFLAGS' and 'YFLAGS' for lez and yacc(1) options.
In addition, the macro 'MFLAGS' is filled in with the initial command line options supplied to

make. This simplifies maintaining a hierarchy of makefiles as one may then invoke make on

makefiles in subdirectories and pass along useful options such as -k.

Command lines are executed one at a time, each by its own shell. A line is printed when it is exe-

cuted unless the special target '.SILENT' is in makefile, or the first character of the command is
'@'.

Commands returning nonzero status (see intro(1}) cause make to terminate unless the special tar-

get '.IGNORE' is in makefile or the command begins with < tab > < hyphen >.

Interrupt and quit cause the target to be deleted unless the target is a directory or depends on the

special name '.PRECIOUS'. All files ending in ,v or having the form ,v 0 are assumed to be pre-
cious.

Other options:

-i Equivalent to the special entry '.IGNORE:'.

-k When a command returns nonzero status, abandon work on the current entry, but con-

tinue on branches that do not depend on the current entry.

-n Trace and print, but do not execute the commands needed to update the targets.

-t Touch, i.e. update the modified date of targets, without executing any commands.

-r The predefined macros and default rules are not processed which saves processing time,
and protects the user from hidden intertactions. The special entry '.NORULES:' is

equivalent.

-s Equivalent to the special entry '.SILENT:'.

-q Test the prerequisites of a (single) target, and return a 0 status if the target is up to date
and -1 status if it needs to be remade.

-Q For recursive calls to make asking for the special status reports of-q. Notice that a posi-
tive status indicates an error in the child make.

The most common use of make is in maintaining large programs. In the following example all the

.p files are stored in the directory ..//sre and all the .h are stored in the directory ..Jhdr and the
objects are going to be placed in this directory.

SrcDir --_ ../src

Srcs = program.p modulel.p module2, module3.p

Objs -----${Srcs:r,.o,}
program : ${Objs}

${PC} ${PFLAGS} ${Objs}-o program

${Objs} : ${SrcDir}/$,.p
${PC} ${PFLAGS} -c $<

${Objs} : ../hdr/:_..h

Notice that the object names were generated with the modifier r. The second rule should be con-

sidered a foreach object file generate the specified prerequisite and Pascal compile. The third rule
specifies that all the objects are dependent on all the headers.

We present two examples of using make to maintain RCS files. (Macros as defined above).

Rev = working

4th Berkeley Distrib,tion 30 January 1985 3
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FILES

ResFiles = ${Srcs:s,.*,RCS/&,v(${Rev}),}

All : ${RcsFiles}

${RcsFiles} : $*.p

ei -u${Rev} $ <
After you are done editing the working files this make script automatically discovers which files

were actually touched, and checks them in. Note the use of a symbolic revision name.

program : ${Objs}

${PC} ${PFLAGS} ${Objs} -o program

${Objs} :? $*.p

${PC} ${PFLAGS} -c $<

${Objs} :? ${SrcDir}/$*.p

${PC} ${PFLAGS} -c $ <

**.p : ${SreDir}/acs/${@:t},v(working)
${CO} -r${Rev} $@ $<

This example searches two directories for the Pascal sources, first the current directory, and then
the SrcDir. However both sets of sources are dependent on the same RCS files.

An example of archive maintainance is

SRCDIR----- ../sre

INCLUDE _-/usr/include

SRCS----open.¢ close.e creat.c

archive.a: ${saCS:s,^).c$,system.o(1.o),}

ar rv arehlve.a ${?:m}

rm ${?:m}
ranlib archive.a

archive.a: ${INCLUDE}/system.h

archive.a(*.o):? ${@:m}
echo Using ${@:m}

*.o: ${,:s,.,,${SRCDIR}/&.c,}

${CC} ${CFLAGS} $<

archive.a(*.o):? ${${@:m}:s,).o,$ {SRCDIR}/1.e,}

${CC} ${CFLAGS} $<

Maketd:
Maketd-mMakefile-Asystem.o-s${SRCDIR} ${SRCS}

Notice that the ar command is executed once with all the .o files which are out of date, avoiding

some overhead.

The macro ${MAKE} is recognized as the current make command, and treated specially. It is

called with ${MFLAGS} as arguments, and also called when the -n option is in effect. When
Make is called from Make a return code is requested and examined to see if the target was remade.

makefile, Makefile

SEE ALSO

sh(1), touch(I), f77(1), pc(l), Maketd(1)

BUGS

Some commands return nonzero status inappropriately. Use -i to overcome the difficulty.

Commands that are directly executed by the shell, notably cd(1), are ineffectual across newlines in

fl%ake.

4th Berkeley Distribution 30 .January 1985 4
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NAME

rulecount -- a SAGA parse tree analyzer

SYNOPSIS

rulecount [options] countfile [sagafile ...]

DESCRIPTION

Rulecount is a program which counts the uses of production rules in a SAGA parse tree. A report

is produced on the standard output giving the indices of the rules found and their corresponding

multiplicity. Various options may be invoked to produce different reports. The counts are stored

in the file given as the countfile on the command line, and these counts can b_ accumulated over

several runs of the program. This allows one, for example, to run the program with a test suite

for a given set of editor files and determine whether all rules have been used or, if not, which ones

have not. Each saga]ile is a directory produced by a SAGA language-oriented editor, and from 0
to 32 files may be given on the command line. If no sagafile is given, the countfile is analyzed and

a summary report is produced for the values stored in it.

Ruleeount first performs a traversal on the SAGA parse tree file from an input SAGA editor direc-

tory, saving the counts of the rules used in the countfile, either creating a new file if one does not

exist, or adding the counts to the countfile if one does exist. The program performs a traversal on

each SAGA parse tree file on the command line, accumulating the results in the countfile. On

completion of all the traversals, a summary report is produced for the accumulated counts, includ-

ing the counts which existed, if any did, in the countfile when the program was run. Various

options can be used to control the analysis and the report produced:

-oN inform ruleeount of the index, N, of the origin rule of the grammar which the particular

SAGA editor used in producing the parse tree file.

-rN inform rulecount of the index, N, of the maximum rule of the grammar which the particu-
lar SAGA editor used in producing the parse tree file.

-rN include in the output report 0nly those rules which occurred N or more times in the input

file. This defaults to 1 if this option is not used.

-i generate a report for each SAGA file in addition to the summary report which is always
produced. This allows one to see which files used which rules. A few additional statistics

are included in the individual reports, such as a count of the nodes and their types as

found in each SAGA file, as well as the maximum depth reached in the traversal stack.

This last value may be used to gauge the depth of the parse tree.

-p print the percentage of the grammar rules used in a particular parse tree. To use this

option, the -o and -r options must also be used (for obvious reasons). If the -i option is

on, the percentage used by each parse tree as well as the total percentage covered by all
are reported.

-z display only those rules which have not been used (have a count of zero). It is recom-

mended that the -r and -o options be turned on when using this, so that the program

knows what the upper and lower bounds of the grammar rules are. Otherwise, it only
gives those rules which lie between the current minimum and maximum rules found.

-t trace the traversa/ of the SAGA parse trees. This is primarily a debugging option, and is

recommended only as a last resort, as it produces scads of output (a single line for each
node of a parse tree).

-h display the usage line and the list of available options for the program. This information

is stored in the file 'help.rulecount' in the saga/src directory containing the program
source.

SAGA 4/25/s5 1
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DIAGNOSTICS

Errors in the arguments to rulecount are flagged, and conditions which violate the integrity of the

report are also checked, such as the occurrence of a rule whose index is greater than that given in

the -r option. Most of these errors cause the program to halt immediately. As intermediate

counts are written out to the countfile after each parse tree has been traversed, the contents of the

countfile may be corrupted by spurious input. Some attempts have been made to indicate where

the error occurred, thoUGH these may not always be sufficient for full debugging.

FILE MODES

The user must have read/write permission on the countfile and read permission on the SAGA

file(s) on the command llne.

FILES

"saga/bin/rulecount -- the executable program file "saga/src/utilities/rulecount -- the source

directory "saga/lib/help.rulecount -- the help file

IDENTIFICATION

The author of this program was Hal Render, currently working for the University of Illinois. All

problems and suggestions for improvement should be addressed to him. His current address is:
Hal Render

222 Digital Computer Lab

University of Illinois

1304 W. Springfield

Urbana, Illinois 61801

(217) 333-7937

BUGS

The program does not currently check to see if the input SAGA files come from the same editor or
even the same language. The user must take care not to mix files from different editors or

languages, if he/she wishes an accurate report on the parse tree files. This program has not been

tested very rigorously, and is thus subject to error. If any problems are found, please contact Hal
Render.

SAGA 4/25/85 2
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SCAT ( 1 ) UNEK Programmer's Manual SCAT ( 1 )

NAME

scat -- catenate and print the text from SAGA parse tree directories.

SYNOPSIS

scat <parse-tree-directory> [<parse-tree-directory> ... ]

DESCRIPTION

Scat produces the source text representation of a SAGA parse tree on standard output. If more

than one parse tree is specified, the output will contain the text from each tree, in the order that

the arguments were supplied. Scat operates by traversing only the frontier of the parse tree, so
it may be used to extract the text from parse trees containing discontinuities (suspension points
and errors). It also can recover the text from parse trees whose internal structure has been

scrambled, as long as the frontier is intact (which is usually the case when a parser bug in the
editor occurs).

SEE ALSO

epos(1)

AUTHOR

Peter A. Kirslis, Dept. Computer Science, Univ. Illinois -- Urbana, 1304 W. Springfield Ave.,
Urbana, Illinois, 61801. Written February, 1985.

SAGA 24 July 1985 1
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NAME

sem_create - create a semaphore

SYNOPSIS

°saga/bln/sem._create semaphore_name

DESCRIPTION

sere. create creates a semaphore to control interprocess communication. The semaphore is

implemented with a file. To create a semaphore, execute sem_create and provide a name for a

semaphore. The name of the semaphore should have the suffix .sere. sem create creates a file

named semaphore_name.

DIAGNOSTICS

sem_create will print an error message if more than one argument is given or if the argument
does not end with .sem.

SEE ALSO

sem_intro{1), sem_destroy(1), sem_p(1}, and sem._v(1). A C interface is described in

sem_C_int(2).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAOA 7/25/85 1
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sem_destroy { 1 ) UNIX Programmer's Manual sem_destroy ( 1 )

NAME

sem_destroy - destroy a semaphore

SYNOPSIS

"saga/bln/sem destroy semaphore_name

DESCRIPTION

sere_destroy destroys a semaphore. To destroy a semaphore, execute sere_destroy with the
semaphore name as the only argument. The name of the semaphore should have the suffix
,selrl,

DIAGNOSTICS

sere_destroy will print an error message if more than one argument is given or if the argument
does not end with .sere.

SEE ALSO

sem_intro(1), sem_ereate(1), sem_p(1), and sem_v(1). A C interface is described in sem_C..int(2).

IDENTIFICATION

Bob Terwilliger, UIUG DCL Urbana, Ill. 61801. Phil Roberts, UIUG DCL Urbana, Ill. 61801.

SAGA 7]25/85 1
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NAME

sem_p - perform a P operation on a semaphore

SYNOPSIS

"saga/bin/aem._p semaphore_name

DESCRIPTION

aem__p performs a P operation on a semaphore. If a P operation has already been performed on

the semaphore, the new P operation will block. The name of the semaphore should have the

suffix .sere. The P operation is performed in the following manner. An flock is performed on

the file that represents the semaphore (the file is created by sem_create). If a P operation has

already been performed, the flock will block. The process now attempting the P will remain

blocked until the process holding the flock is killed.

When the flock succeeds, a new process is forked to hold the flock. The PIT) of the new process

is written in the semaphore file and the process goes to sleep. The corresponding V operation

reads the PID from the semaphore file and kills the process holding the flock allowing the next

process to perform its P operation.

DIAGNOSTICS

sem_p will print an error message if more than one argument is given or if the argument does
not end with .sem.

SEE ALSO

sem_intro(1), sem._create(1), sem_destroy(1), and sem_v(1), i C interface is described in

sem_C int(2).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAGA 7/2.5/85 1
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TED ( 1 ) UNIX Programmer's Manual TED ( 1 )

NAME

ted, browse, peg - a family of prototype tree structure editors

SYNOPSIS

ted [< filename > ]

browse [<filename>]

peg [< filename > ]

DESCRIPTION

These are a family of closely related editors for editing unrestricted trees. Each of these editors is

unique, although they share a common editor core and common editing features. Each editor con-

sists of the (slightly tailored) editor core, and packages of external programs that operate on the

tree constucted by the editor. The basic paradigm of ted editing is: the user constructs or
modifies trees using the editor, then from within the editor, invokes external programs to certify

that the tree maintains its desired properties. The user is encouraged to create his own external

programs to suit his particular needs.

DIAGNOSTICS

Ted-based editors are chocked full of self-explanatory error messages.

FILES

.tedrc ted initialization file (lisp commands)

SEE ALSO

Since the ted editors are prototypes, they are rapidly changing; however the most comprehensive
document is "Ted: a Tree Editor with Applications for Theorem Proving", by David Hammerslag.

The uiucdcs local notesfile "ted" is a good source for up-to-date (tho less comprehensive) informa-
tion.

IDENTIFICATION

David Hammerslag uiucdcs!hammer

BUGS

Being prototypes these editors are problably loaded with bugs.

There is very little hard documentation on any of the editors except ted.

University of Illinois 4/25/85 1
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NAME

sem_create ° create a semaphore to control access to a file

SYNOPSIS

#include "~saga/src/sem_C_int/sem_C_int.h" #include "~saga/src/msc/msc.h"

int rtrn ;

int sem create(file_name,semaphore,argc,argv) char filename[] ;char semaphore[] ;int argo ;

char *argv ;

ec * -saga/src/sem_C int/sem_C_int.o -saga/src/sem_C_int/msc.o

DESCRIPTION

sem_create creates a semaphore to control access to a file. The semaphore controls access to

file_name, semaphore receives the name of the semaphore when sere_create is done. The
name of the semaphore is file. name with .sere concatenated to the end. sem...create executes

the system program ~saga/bin/sem._create to create the semaphore, semaphore is the name of
the file used for the semaphore. In other words, this function executes the command

"sem create semaphore".

DIAGNOSTICS

rtrn gets the return code from the system call to execute sem._create.

SEE ALSO

sem._create(1), sem._destroy(2), sem p(2), sem_v(2).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAGA 7/25/85 1
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sem_destroy ( 2 ) UNLX Programmer's Manual sem_destroy ( 2 )

NAME

(3 interface to semaphore routines.

SYNOPSIS

#include "-saga/src/sem_C..int/sem_C_int.h" #include "-saga/src/msc/msc.h"

int rtrn ;

int sem_destroy(semaphore,argc,argv) char semaphore[] ; int argc ; char *argv ;

cc * ~saga/sre/sem_C_int/sem_C_.int.o -saga/src/sem_C_int/mse.o

DESCRIPTION

sem_destroy destroys the semaphore created by The argument semaphore is the name of

the semaphore created when sem_create(2) was called.

DIAGNOSTICS

rtrn contains the return code from the system call.

SEE ALSO

sem_C_int(2), sem._create(2), sem_intro(1), sem_create(1), sem_destroy(1).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAGA 7/25/85 1
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NAME
sem_p- performaP operationona semaphore

SYNOPSIS

#include "~saga[sre/semC_int/sem_C_int.h" #include "-saga/sre/msc/msc.h"

int rtrn ;

int sem_p(semaphore,argc,argv) char semaphore[] ; int argc; char *argv ;

ee * ~saga[sre[sem_C_int[sem_C_int.o -saga/src/sem C_int/m.sc.o

DESCRIPTION

sem_p performs a P operation on semaphore. The function really, executes the command

"sem_p semaphore". A V operation can be performed on the semaphore by calling sem_v(2).

semaphore is the name of the semaphore created by calling sem_ereate(2).

DIAGNOSTICS

rtrn contains the return code from the call to system.

SEE ALSO

sem_C_int(2), sem_v(2), sem_intro(1), sere_p(1), sem_v(1).

IDENTIFICATION

Bob Terwiiliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAGA 7]25/85 1
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semj( 2) UNIX Programmer's Manual _m.__(2)

NAME

sem_v - perform a V operation on a semaphore

SYNOPSIS

#include "'saga/src/sem_C_int/sem_C_int.h" #include "'saga/src/msc/mse.h"

int rtrn ;

int sem_v(semaphore,argc,argv) char semaphore[] ; int argc ; char *argv ;

cc * -saga/src/sem_C_int/sem_C_int.o -saga/src/sem_C_int/msc.o

DESCRIPTION

sem_v performs a V operation on semaphore. The function really executes the command

"sem_v semaphore". A P operation can be performed on the semaphore by calling sem_p(2).

semaphore is the name of the semaphore created when sem_create(2) was called.

DIAGNOSTICS

rtrn contains the return code from the call to system.

SEE ALSO

sem_C_int(2), sere_p(2), sere intro(1), sem p(1), sere_v(1).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ilk 61801. Phil Roberts, UIUC DCL Urbana, I11. 61801.

SAGA 7/25/85 1
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NAME

Pascal to System interface.

SYNOPSIS

#include "/mntb/3/srg/saga/include/system.h" pc* saga/lib/system/system/system.o

DESCRIPTION

The purpose of these routines is to provide a standard interface from Pascal (the pc compiler) to

the Unix system. The idea is that the SYS library should be the only thing which needs to be

altered to port the Pascal portion of SAGA to System 5 or Xenix (I know, fat chance). There are

two essential differences between the Pascal and C versions of the system calls. First strings in

Pascal are passed as "systring", and converted to the C NULL terminated format internally.

Second pointers in Pascal must be typed. If the value of a pointer is required then the "ord0" of

that pointer returns an integer which agrees with the type address defined in system.h. Sadly,

there is not a well defined mechanism for going the other way. An undlscriminated variant record

is necessary to convert pointers to integers. Further, the slze of a record must be calculated by

calling a "Delta" function with two var parameters which are successive array elements. The func-

tion must be written in C and should define the arguements as integers. For Example:

function DeltaMyType(var lo, hi : MyType) : integer ;

external ;

int

DeltaMyType(lo, hi)

int lo, hi ;

{
return(hi - lo) ;

}

There are some other special types. The Unix file system sets permission codes for files. In the

header files these parameters are always called mode. The constants OtherExee_ OtherWrite,

.., GroupExec, -.90wnWrlte, can be added together to form the desired permission code. The

SYSaccess function has the testmode argument, which takes a sum of the AeeessExist,

AecessExec, AecessWrlte, and AecessRead constants. The SYSlseek function uses the Seek-

Absolute, SeekRelative, and SeekFromEnd constants (not added together). Finally, the

SYSopen function uses the constants OpenReadOnly, OpenWriteOnly, OpenReadWrite,

OpenNoDelay, OpenAppend, OpenCreat, OpenWrunc, and OpenExcl.

Normally the parameters of each SYS procedure correspond to the parameters of the C function.

The acceptions are the memory allocation routines, which return the pointer as a var parameter

rather than as a function result. Note: these procedures also had to be integrated into the Pascal

runtime environment, care should be taken when rewriting.

DIAGNOSTICS

Generally, error returns are the same as for G. SYSerror can be used to obtain a text description

of each error, providing there are no intervening SYS calls.

FILES
$

SEE ALSO

Associated C functions, and section 2 introduction.

IDENTIFICATION

George McA Beshers, UIUC DCL Urbana Ill. 61801.

1, July 1
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BUGS

The systring type is currently limited to 126 characters which is somewhat small.

SYSintro (2)

1, -- July 2
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NAME

_ AlloePermid

SYNOPSIS

AlioePermld(
name: systring) : sypermidindex;

DESCRIPTION

This procedure allocates a permanent id for SAGA string and symbol tables. For this routine to
work the environment variable SAGA_INDEX_.FILE must be set the pathname of a writeable file.

The file is maintained in a format similiar to /etc/passwd. Specifically, the permanent id, colon,

and the full path name. Unfortunately, AllocPermid is no smarter than csh_ i.e., it is fooled by

symbolic links.

In practice this function need only be called when a new file is created. If the full path name
equals one already in the table, that permanent id is returned. Currently, the table size is lk, the

goal being support SAGA (editor, olorin, filters, ...) under SAGA. Another way to think of this is
that the SAGA_INDEX_FILE is a view of the SAGA system.

If an error occures a message is printed. Index 1024 is the error return.

DIAGNOSTICS

getwd failed.

Unix United not supported (path starts with/../).

getenv failed (SAGA_INDEX_FILE is not set).

SAGA Index File open failed.

FILES

File specified by SAGA_INDEX_FILE.

SEE ALSO

String.3, Richards Thesis.

IDENTIFICATION

Beshers, George. beshers@uiuedcs.

BUGS

Perhaps one should be the error return. One is a valid permanent id, thus the editor would keep

working in an improper environment.

SAGA 7/23/S5 1
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STRING ( 3 ) UNIX Programmer's Manual

NAME

String Manager - String table management for SAGA.
o_

SYNOPSIS

****** String Table Routines ******

createstrlngtable(

name: systring;

permid: sypermidindex;

mode: integer;

var rootcontext: contexttag;

var error: boolean);

openstrlngtable(

name: systring;

var permld: sypermidindex;

var rootcontext: eontexttag;

var error: boolean);

elosestr|ngtable(

rootcontext: contexttag;

var error: boolean);

flushstrlngtable{

rootcontext: contexttag;

var error: boolean);

geterrorflags(

var errorflags: errorset);

geterrtext(

errortype: syerrorkind;

var errtxt: systring);

inltstrlngmanager;

****** String Manipulation Routines ******

insertstrlng(

name: systring;

context: eontexttag;

vat newstring: stringtag;

vat found: boolean;

var error: boolean);

retrlevestrlng(

string: stringtag;

var name: systring;

var error: boolean);

ioeatestrlng(

SAGA 7/17/85
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name:

context:

var string:
var found:

var error:

systring;

contexttag;
stringtag;

boolean;

boolean);

retrlevestrlnglength(

string:

var error:

stringtag;

boolean) : integer;

deletestrlng(
string:

vat error:

,Not Active*

strlngtag;

boolean);

eomparestrlng(
strtgl:

strtg2:
var error:

stringtag;

stringtag;

boolean) : sycompareresult;

comparestrlngbystrlng(
strl:

strtg2:
var error:

systring;

stringtag;

boolean) : sycompareresult;

getstrlngtype(

string:

var strlngtype:
var error:

stringtag;

integer;

boolean);

setstrlngtype(
string:

stringtype:

var error:

stringtag;

integer;

boolean);

gettagfrag(
string: stringtag) : sytagfragment;

buildtag(
permld:

tagfrag:

sypermidindex;

sytagfragment) : stringtag;

sycompareresult ---- (strlt, streq, strgt) ;

****** Systring Utility Routines ****.**

makestrlng(
8:

var sy:

eoncatsystrlng(
vat result:

charbuf ;

systring) ;

systring;

SAGA 7/17/85
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STRING ( 3 ) UNIX Programmer's Manual STRING ( 3 )

first:

second:
systring;

systring) ;

int2strlng(
i : integer;

var result: systring;

wrsystr(
var out : text;

s : systring) ;

DESCRIPTION

These routines constitute the SAGA string manager. The lnltstringmanager routine must be
called first since it is the Pascal "solution" to compile time initialization.

The openstrlngtable, createstrlngtable, flushstrlngtable, and elosestrlngtable procedures

provide the file system level access to a string table. The file system procedures append ".str" to

the name provided and attempt the operation implied by their name. You can not open or Great

the same file (by path name) twice, or two files with the same permanent id. All four of the opera-

tions can fail due to file system access failure.

The concept of "contexttag" pertains more to the symbol manager than the string manager, and is
used here for comparability. The context tags actually used may be either the root context

' • JI AI _resumes by ihe ...... and ..... ally U_nererea_es_rlng_aDm ac[,ive cun_ext fur _a_opens_ring_aDm, or
symbol table with the same permanent id. The permanent id is used to distinguish between

different string tables. It is encoded in both "contexttags" and "stringttags" so that a tag uniquely

identifiers a particular string throughout the system. The mechanism for assigning permanent ids
is described in AllocPermid.

The string manager deals with systrlng(s) which are a record with the following fields:

start: 1..126;

count: 0..126;

chars: array [1.126] of char;

Thus if the chars contains "This is a test", with start_-_4 and count----5 then the string equals "s is

". The procedures makestring, concatsystring, int2systring, and wrsystr are auxUary routines to

help manipulate systrings. Note: makestring('testlng 1 2 3', s) works fine, but trailing spaces are

lost. Wrsystr writes the string to the specified file.

The lnsertstrlng is the only way to put strings into the symbol table. The inserted string's tag is

returned in new string. NOTE: if the string exists found is set, and NO error is generated, con-

trary to earlier versions. The retrlevestrlng routine is the inverse. It is of course an error to try
to retrieve a string associated with an un-opened string table, or a string which doesn't exist. The

retrlevestrlnglength is faster than retrievestring, used mostly by the editor for screen refresh.

The deletestring procedure exists, but is disabled because it is not possible to inhibit copying of
editor pointers. The getstrlngtype and setstrlngtype permit an integer to be stored with each

string for classification purposes (reserved words, function/procedure/variable classification ...).

The geterrorflags and geterrortext routines are used by both the string and symbol table

managers. They should be called whenever the "error" parameter is set upon procedure return.

The gettagfrag and buildtag routines provide support for optimizations used by the editor. The

sytagfragment is a 2 byte quantity, and the strlngtag is 4 bytes. This saves some space in the
parse tree node.

DIAGNOSTICS

SAGA 7/17/85 3
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FILES

name.str

SEE ALSO

symbol(3), AllocPermid(3)

IDENTIFICATION

beshers@uiucdcs

BUGS
126 is too small.

SAGA 7/17/85 4
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1. Introductlon

Pascal provides no mechanism to support random access to files. This document describes a software

package which permits a program written in Berkeley Pascal to randomly access records in a file. The

programmer specifies a record to be paged and provides a buffer (an array of records) to contain a portion

of the file in memory. The package of paging routines then provides an interface by which the records in

this file can be accessed and modified. Only a small portion of the file needs to be memory resident at any

time; the package implements a demand-pager to move the data in and out of memory as required. The

routines in the package can also be used to define an interface to treat the records as an encapsulated data

type, and implement additional access routines to provide access to the fields in the record in an imlemen-

ration independent manner.

2. The Paglng System

The paging system provides access to a potentially large file of records through a possibly small area

of memory available to a program. Conceptually, the file may be thought of as an array of records, the

first one labelled with index 1, and with no upper bound. As higher and higher indices are referenced,

additional pages are added to the file. The file is limited in size only by UNIX system imposed restrictions



(typicallythe amount of free space on the file system containing the file).

Each record in this file can be read or written independently from all others in the file, in any order

whatsoever. The programmer using the paging system simply specifies the index of the record in the file he

wishes to access, and the record will be swapped into memory if not already present, and made available to

him. Figure 1 illustrates both the concept and the implementation scheme used by the routines.

The records to be paged can be any size up to but not greater than the size of the disk page which is

swapped by the operating system. On older systems, this size is typically 512 bytes, although page sizes of

1024, 4096, and 8192 bytes are also common.

Since all disk i/o is performed a page at a time, no record is stored across two pages, since this dou-

bles the overhead to retrieve the record. So as many records as will fit onto a single page are stored on

that page, and the remaining space is left as a "hole", which is not used by the paging system. This can be

seen in the disk file diagram in Figure 1.

The data is stored in memory as an array of records. The user's program must contain a declaration

of the record, and a pointer to an array of records to be used as a buffer to contain the pages of records

which will be swapped into and out of memory by the paging system. The routines use a page table and

buffer table to store the information needed to manage the data. This information is hidden from the user,

and it is not necessary to understand these structures in order to use the paging routines; these structures

are shown in Figure 1 only for completeness and the interest of the reader.

3. The Paging Routines

This section presents the declarations of the paging routines. Figure 2 presents a flowgraph illustrat-

ing the permissible calling sequences of these routines, to help the reader understand to relationships

among the routines.

3.1. Inlt|allzat|on

The first routine called must be pginit, to initialize the internal data structures to be used by the

pager. The parameters to this routine permit a debugging file to be specified, into which a trace of the
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paging activity will be placed. The paging routines must also have been compiled with the -DDEBUG

command line option {or a #define DEBUG) line in the source file, so that the debugging code will be

included in the object library. A number of debugging levels are possible; these are as follows:

Caution: debugflag > 2 produces volumes of output!!!

0 => No debugging (no debug file is created).

1 => Log all routine calls, and each data page swapped between disk and memory,
2 => and also show buffer pool entrles after 'pgusebuffer" calls,

3 => and also show every 'pgaccess' call,

4 => and also show page/buffer tables for buffer assignments,

5 => and also show page/buffer tables for buffer releases.

function pginlt
(debugflag: integer;
var dflle: charhuf

): integer; external;

(* Initialize data structures *)

(* Nonzero => use debug file *)

(* Name of debugflle or 0 *)
(* Return: 0 for success; -1 for error *)

8.2. Error Messages

The paging routines do their work silently. If an error occurs, an error code (usually -1) will be

returned. A descriptive error message can also be retrieved for printing, if desired, through a call to pger-

rot. This routine returns an error message corresponding to the most recent paging system error encoun-

tered.

procedure pgerror (* Get description of most recent error *)
(var errmsg : charbuf ; (* Return : the error message *)
var errlen: cbufindex (* Return: the length of the message *)

) ; external;

8.8. File Management

Several routines are provided to manage the files created by the pager: pgj_lecreate, pgfileopen,

pgfileelose, pgfileflush, pgfileehmod, and pgfiledelete.

When initially created, a file is assigned access permissions as specified by the mode parameter; these

permissions can later be changed with pgfileehmod. For file creation, the reesize parameter must specify

the size of the record in bytes. This information is used to determine how many records will fit onto a disk

page. The routine returns the number of records per page, which can subsequently be used in a call to
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Figure 2: Paging Routine Flowgraph. This figure shows the necessary ordering of calls to the
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pgusebuffer (described later) to assign a buffer pool to the file." When a file is opened, both the record size

and number of records per page are returned to the caller for similar use.

function pgfllecreate
(var name: charbuf;

mode: integer;

recslze: integer;

var recperpagep:

integer

): lnteger; external;

(* Create a new paged flle of records *)
(* Zero-terminated flle name *)

(* Flle protection to be assigned *)

(* How many bytes of space per record *)

(* Return: Number of records per 1/o block *)

(* Return: flletag for success, -1 for error *)

functlon pgflleopen
(var name: charbuf;

var recslzep: integer;

var recperpagep:
integer

): lnteger; external;

(* Open an exlstlng record flle *)
(* Zero-terminated flle name *)

(* Return: number of bytes space per record *)

(* Return: number of records per I/o block *)

(* Return: flletag for success, -1 for error *)

When finished, the program must close the file before exiting. This is necessary to write any data

remaining in memory to disk, write the file trailer record (which contains the record and page size of the

file), and close the file.

If the programmer wants to periodically write all data that is in memory out to disk without releas-

ing the space and closing the file, then pgfileflush should be called.

function pgflleclose (* Write data and close flle *)

(flletag: integer (* Flle to wrlte and close *)

) :lnteger; external; (* Return: 0 for success, -1 for error *)

function pgflleflush

(flletag: integer

): lnteger; external;

(* Flush data to dlsk, keeping copy In memory *)

(* Flle to flush *)

(* Return: 0 for success, -I for error *)

File permissions of an existing file can be altered with a call to pgfilechmod. A file may be deleted

with a call to pgfiledelete.

function pgfllechmod

(var path: charbuf;

mode: integer

): integer; external;

(* Change the permissions on the named flle *)
(* Zero-terminated flle name *)

(* New permissions for file *)

(* Return: 0 for success, -1 for error *)
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function pgfiledelete

(var path: charbuf

): integer; external;

(* Delete the named file *)
(* Zero-terminated flle name *)

(* Return: 0 for success, -1 for error *)

8.4. Buffer Allocation

A pointer to the data buffer must be declared in Pascal so that the program can reference the records

with code written in Pascal. The C routines need the memory address of this buffer so that they can swap

the data in and out of memory. But because Pascal is strongly typed, and only one routine is provided for

all arrays of records, this pointer must be passed to pgusebuffer by first calling ord( bufptr J in order to

convert all pointers to an integer type which will be accepted by the routine. This value is treated by the

routine as a memory address, and used as a reference point when reading and writing the paged data to

and from memory.

The reecou_ parameter specifies the size of the buffer: how many records it contains. Since a data

buffer which is a fraction of the page size cannot be used, this routine requires the buffer to be an exact

multiple of the page size in use. Using the recperpage parameter returned by either pgfilecreate or

pgfileopen, the receount parameter of pgusebuffer can be set to an integer multiple of this value. A poten-

tial difficulty arises since different UNIX file systems on the same computer can be assigned different page

sizes, and the program may not be able to find a value that will work for all of them. To protect against

this case, the program can first check that its buffer is an exact multiple of the page size, and if it finds

that it is not, it can decrease the record count to be passed to pgusebuffer to a value that is an exact multi-

ple. There will be some wasted memory at the end of the buffer, but since Pascal does not permit the

specification of arrays of records dynamically, there is no other choice.

function pgusebuffer

(flletag: integer;

bufaddr: integer;

reccount: integer

): integer; external;

(* Assign a buffer to a file *)

(* Open file to page in this buffer *)

(, Address of buffer: use oral(buffer) *)

(, Buffer length in record size *)

(, Return: 0 for success, -1 for error *)

7



3.5. Data Access

Once the file has been created or opened, pgaccess is used to access records in the file. This routine

expects the absolute record index, assuming that the first record in the file is assigned index 1. It takes this

index, brings the record into memory if it is not already resident there, and returns a relative index into

the record in the data buffer where the record may be found. Figure 3 illustrates the mapping that is per-

formed by this routine.

To simplify record access, the programmer is advised to code this function call as follows:

buffer _ [pgaccess (filetag, recnumber) ] . field

By using this scheme, the program always uses only the absolute record index, while the relative index is

used only for addressing to access the actual record. Note that this relative index should not be saved,

since subsequent references to the paging routines will eventually cause the page containing this record to

be swapped out of memory, probably to be swapped back in later at a different relative index.
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Access: Must map (file,record)into(index)inbufferof records:

file record

file page offset

buffer offset

index

Figure 3: File page to buffer mapping. If the file page is not resident in any buffer, then one must

be allocated and the page copied into it. This may cause another page to be written to disk if

this buffer was previously in use.
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Since this syntax is a bit unwieldy, it is recommended'that the programmer provide a function to

access each field of the record, thus hiding this implementation information and providing encapsulation of

the record reference. A typical function might appear as:

function Xfleld (reclndex : integer) : <type-of-field> ;

begin
Xfleld := buffer _[pgaccess(flletag, reclndex)] . fleld

end;

where X ls replaced by some prefix of the programmer's chooslng

and <type-of-field> ls the data type of the fleld In the record.

Then all references to this field of the record can be written as Xfield(i), a much simpler notation. If many

references to fields within a single record are required at once, the form

with buffer ^ [pgaccess (filetag, reclndex) ] do begin ... end

can be used instead to decrease the overhead of all of the pgaccess calls which would otherwise be needed.

functlon pgaccess
(flletag: integer;

recnum: integer;
modify: integer

): integer; external;

(* Map a (file, record) to a (buffer) index *)

(* Flle containing the record *)
(* Absolute record index *)

(* Nonzero => this is a write reference *)

(* Return: actual buffer index or 0 for error *)

Routines pglock and pgualock are a recent addition to the paging system. They are intended to per-

mit the direct use of a pointer to a record over a period of time to decrease the overhead of the paging sys-

tem. The page containing the record is locked into memory and will not be swapped until all records on

that page have been released by pgunlock. Caution must be observed if these routines are used, since it is

possible to deadlock the system.

A pointer to a record, represented as an integer, is returned in order to permit this routine to be used

with many different data types. Since this integer is not acceptable to Pascal, it will need to be type con-

verted into a pointer to a record by a simple C routine which can he written by the programmer. This

routine simply returns its argument, but is declared in Pascal as being called with type integer and return-

ing a pointer to the desired record. Unless a clear use is seen for this routine, the programmer is advised

to use pgacccss instead, since it provides the same access.



function pglock

(flletag: integer;

recnum: integer;

modify: integer

): integer; external;

(* Lock (file, record) In memory *)

(* File contalnlng the record *)

(* Absolute record index *)

(* Nonzero => thls is a write reference *)

(* Return: actual memory address of record *)

(* or 0 for error *)

function pgunlock

(flletag: integer;

recnum: integer

): integer; external;

(* Unlock (file, record) from memory *)

(* Flle containing the record *)

(* Absolute record index *)

(* Return: 0 for success, -1 for error *)

4. Debugglng Routlnes

Several additional routines are available which print out the internal data structures used by the

paging system. These can be used both to improve the user's understanding of the operatin of the system

if desired, and to help track down any bugs that may arise.

Each routine takes a filetag parameter corresponding to the file being queried, a header parameter to

indicate whether a table header should be displayed, and a where parameter, which should be set to either

1 or 2 to indicate printing on either standard output or standard error respectively.

void

pgd_flltab(flletag, header, where)

Int flletag;

Int header;

int where;

/* dlsplay flltab structure */

/* display for thls flle */

/* nonzero => print header line */

/* where to print data */

void

pgd_bufpool(flletag, header, where)

Int filetag;

int header;

Int where;

/* dlplay buffer pool struct */

/* display for this file */

/* nonzero => print header line */

/* where to print data */

void

pgd_pagtab(filetag, header, where)

Int flletag;

int header;

Int where;

/* display page table */

/* display for this file */

/* nonzero => print header line */

/* where to print data */
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void

pgd_buftab(flletag, header, where)

Int flletag;

lnt header;

int where;

/* display buffer table */

/* dlsplay for this file */

/* nonzero => print header llne */

/* where to print data */

8. Uslng the Paglng System Library

The paging system declarationsare includedinthe user'sprogram with the followingstatement:

#include "pager.h"

When the program iscompiled, the paging routinesare linkedinto the program during the load step

of the compilation:

pc -c yourprogram.p

pc -o yourprogram yourprogram, o pager, o

6. Summary

The paging routines provide a mechanism by which random access file i/o can be performed from

Pascal programs, and by which a potentially very large file of data can be accessed in a program using a

possibly small amount of memory. The cost of these functions is the increased overhead of a procedure

call per record reference. These routines are used by the SAGA language-oriented editor to manage the

parse trees which are constructed during the editing process. Questions should be directed to the author.
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